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Abstract 

 

The recent literature on the effect of public transit lines on property values has relied primarily 

on difference in difference estimation approaches.  The standard difference in difference approach 

of comparing sales prices before and after the opening of a new transit line or station is not well 

suited to this analysis because prices typically rise well in advance of the new service and there is 

no clear treatment or control area.  Moreover, estimated treatment effects are likely to vary 

spatially and are not necessarily uniform across the full spectrum of home prices.  An analysis of 

home prices before and after the opening of Chicago’s Orange Line from the Loop to Midway 

Airport suggests that house prices began to rise near the new line about two years before the 

opening.  Estimated appreciation rates are highest for relatively low priced homes, and there is 

signification spatial variation within the area close to the new line.   
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1. Introduction 

The large literature on the effects of transit lines on house prices began with 

straightforward hedonic regressions of house prices on distance to stations, typically using 

cross sectional data sets.   Representative examples of the hedonic approach include Dewees 

(1976),  Bajic (1983), and Voith (1993).  Although the hedonic approach can establish whether 

prices are higher near transit stations, the results are likely to be biased by missing variables 

that themselves are correlated with transit access.   Studies such as McMillen and McDonald 

(2004); Chatman, Kim, and Tulach (2012); Kim and Lahr (2013); and Pilgrim and West (2018)  

use repeat sales as a way to control for the effects of missing variables when analyzing 

appreciation rates near new rail lines. Similarly, Baum-Snow and Kahn (2000) use Census data 

to estimate the effect of changes in distance to a station after a new transit opens on the change 

in property values 

 Another set of studies use difference in difference (DD) approaches to estimate the 

effect of new transit lines on house prices.  Examples include Gibbons and Machin (2005); 

Billings (2011); Zheng et. al. (2016); Diao, Leonard, and Sing (2017); Wagner, Komarek, and 

Martin (2017); and Pilgrim and West (2018).  These studies compare appreciation rates using 

house sales before and after the opening of new stations for a set of treatment and control areas.  

Although the difference in differences approach is widely used in urban economics (Baum-

Snow and Ferreira, 2015), it generally is not well suited to spatial data sets where the 

appropriate definition of control and treatment locations may be unclear and can vary over 

locations.  For example, a host of studies have analyzed the effects of enterprise zones by 

comparing outcomes for variables such as house prices and unemployment rates for enterprise 

zones to arbitrarily defined control areas.  The enterprise zone is a clearly defined area; the 
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control locations (e.g., contiguous zones, a ring around the enterprise zones, or “similar” areas) 

may or may not be suitable alternatives, and authors such as Hanson and Rohlin (2013) have 

found that estimated treatment effects are sensitive to the definition of the control area. 

The problem is still worse for cases such as new transit lines where the extent of the 

treatment area is also not clearly known.  For example, Gibbons and Machin (2005) define 

their treatment area as any location in London that became closer to a transit stop after a new 

Tube line was opened, while the control locations were all other areas in London.  Although 

this definition might be suitable in a place like London where nearly all locations are well 

served by the Tube, it does not work well for American cities where the new, closer station is 

still too far away to be considered a viable alternative.  Most studies have instead drawn rings 

around the new sites, with close rings being identified as “treatment” areas and distant rings 

called “control” areas.  A typical study then varies the widths to see if the results are stable.  

For example, Pilgrim and West (2018) define treatment as being within ½ mile of a new transit 

line, while the control groups are (1) homes from the rest of South Minneapolis, (2) homes 

within a ½ - 1 mile ring, and (3) any home in  Minneapolis that is more than ½ mile from the 

new line.  Diao, Leonard, and Sing (2017) compare appreciation rates for properties that are 

within 600 meters (the treatment area) to properties that are between 600 and 1600 meters of 

a new transit line in Singapore.  They then estimate separate effects for properties in 0-200, 

200-400, and 400-600 rings.  These approaches are typical of the DD approaches used in 

analyses of spatial data for what is, in fact, an underlying continuous measure of distance from 

a treatment site such as a new transit station. 

My objective in this paper is to demonstrate how a standard DD approach can be 

combined with additional statistical procedures to provide a more comprehensive picture of 
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the change in prices associated with a new transit line.  The data set is an expanded version of 

the one used in McMillen and McDonald (2004) to analyze the effects of Chicago’s Orange 

Line, which opened service between the Loop and Midway Airport in 1993.  Whereas 

McMillen and McDonald analyzed repeat sales, I follow the approach taken by recent studies 

and use a DD approach for the full sample of sales from 1988-2006.  The treatment area is 

defined to be the area within 0.5 miles of the Orange Line (and also closer to an Orange Line 

station than to a station on another line).  The control area is comparable:  the area within 0.5 

miles of one of the other lines on Chicago elevated train system (known locally as the “EL”, 

although some portions are underground). 

I generalize the standard DD analysis by allowing the “treatment” effects to vary by 

year, including years before the opening of the line.  The results confirm McMillen and 

McDonald’s (2004) finding that the effect of the Orange Line was capitalized into nearby 

house prices at least two years prior to its opening, and was especially high in 1992, the year 

prior to the opening of the line.  The results are not sensitive to the width of the ring drawn 

around the new line to define the treatment area, apart from a small range of highly industrial 

properties close to the line where the effect is insignificant.  A combination of quantile 

regression and locally weight regression analysis suggests that these average effects are far 

from uniform:  appreciation rates are much higher for relatively low-priced properties and for 

properties near the stations closest to downtown Chicago.   

The variation in the estimated appreciation rates is far from trivial.  The range in 

estimated appreciation rates for 1988-1992 is 36.0% - 61.1%.  The range is still greater when 

the estimates are allowed to vary by quantile.  For the 0.10 quantile, the variation in estimated 

appreciation rates across locations is 16.9% - 72.7%, with an average of 37.9%  Comparable 
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values for the median and the 0.90 quantile are 29.8% - 58.9% and 31.0% - 56.8%.  The results 

imply a much more complex set of effects of the new line than is implied by an analysis that 

is focused more narrowly on a single, average effect. 

2. Empirical Approaches 

The base empirical model is a slight variation of the standard difference in differences 

specification: 

 𝑙𝑛𝑃𝑖 = 𝑥𝑖𝛽 + 𝛿𝑡 + 𝜆𝑐 + 𝜃𝑡𝑂𝑟𝑎𝑛𝑔𝑒𝑖 + 𝑢𝑖 (1) 

 

where 𝑃𝑖 is the sale price of property i, which is located in census block group c and which sold at 

time t.  𝑋𝑖 is a vector of structural characteristics for the property.  In the empirical application, the 

structural characteristics include building area, lot size, rooms, bedrooms, bathrooms, age at the 

time of sale, and variables indicating the presence of a basement, central air conditioning, brick 

construction, and a garage with 1 or 2+ spaces.  The fixed effects 𝛿𝑡 and 𝜆𝑐 control for time trends 

and characteristics of the census block group that do not change over time.   𝑂𝑟𝑎𝑛𝑔𝑒𝑖 is a variable 

indicating  that property i is located closer to a station on Chicago’s Orange Line than to other 

elevated (EL) train stations.   In contrast to the standard DD specification, equation (1) allows the 

coefficient on 𝑂𝑟𝑎𝑛𝑔𝑒𝑖 to vary over time, which is critical in this application because  new rail 

lines take a long time to build and their effects on the housing market are clearly anticipated well 

in advance of their opening, (e.g., McMillen and McDonald, 2004;  Diao, Leonard, and Sing, 2017; 

an McDonald and Osuji, 1995; and Pilgrim and West, 2018). 

 Equation (1) separates the sample into two groups – the treatment area that is directly 

affected by the opening of the new EL line (Orange = 1), and a control area where prices are not 

affected by the new line (Orange = 0).  Although this specification is in contrast with the early 
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literature as well as more recent studies such as Baum-Snow and Kahn (2000) and McMillen and 

McDonald (2004) that estimate the rate of decline of house prices with distance from new transit 

stations, it follows the trend of DD studies that have recently dominated the literature.  The goal 

of the DD approach represented by equation (1) is to estimate an average treatment effect rather 

than to estimate the spatial variation of a new station on house prices.  The key question is how to 

specify the treatment and control areas reasonably accurately.  

 For the base specification, I define the treatment group as any sale that is within 0.5 miles 

(about 800 meters) of a new station on the Orange Line and that is closer to an Orange Line station 

than to a  station on another EL lines.1  Control group observations include sales that are within 

0.5 miles of a station on one of Chicago’s other EL lines.  Alternatives include distances ranging 

from 0.25 to 1.5 in increments of 0.25 miles.  

All of these specification impose a single, common effect of the new EL line on all sales 

that are within an arbitrary distance.  Although an average is interesting, it may conceal significant 

variation in the effects over both location and type of housing.  In a series of papers, I have 

advocated using locally weighted regression (LWR) procedures to allow for spatial variation in 

estimated coefficients (e.g., McMillen, 1996; McMillen and Redfearn, 2010).  The LWR approach 

is based on an approach developed by Cleveland and Devlin (1988) and Cleveland, Devlin, and 

Grosse (1988), and was introduced to the urban literature by Meese and Wallace (1992).  The 

LWR approach involves estimating weighted least squares regressions for a series of target points, 

with more weight placed on observations that are closer to the targets.  Following McMillen (1996) 

and most subsequent urban LWR approaches, I base the measure of distance on the simple straight-

                                                           
1 I also delete 47 sales that are in Chicago’s Near South Side community area because the observations are 

close to Orange Line shares stops with the Red Line in this neighborhood. 
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line distance of each observation from the target point, an approach that has come to be known as 

“geographically weighted regression.”  The results can then be interpolated to other points in the 

data set.   

Since the objective of the LWR analysis is to determine whether there is significant 

variation in appreciation rates in the area served by the Orange Line, I use only the Orange Line 

sample in the locally weighted regressions.  The base specification includes the structural 

coefficients and the time fixed effects.  The LWR version of the model is:  

 𝑙𝑛𝑃𝑖 = 𝑥𝑖𝛽(𝑧𝑖) + 𝛿𝑡(𝑧𝑖) + 𝑢𝑖 
 

(2) 

where 𝑧𝑖 represents the geographic coordinates for observation i.  The LWR approach makes it 

possible to determine whether the new rail line has a larger effect on sales prices in some locations 

than in others.2  The results are readily displayed in maps of the sample area. 

 The effect of a new rail line may vary by price as well as by location.  For example, it may 

turn out that relatively low-priced homes appreciate more than high-priced homes if higher-income 

households continue to commute by car rather than public transportation following the opening of 

the new transit line. Quantile regression allows the coefficients to vary across the distribution of 

sales prices.  Following the notation in Koenker (2005), let τ represent the quantile and define 

𝜌𝜏(𝑢𝑖𝑐𝑡) = 𝑢(𝜏 − 𝐼(𝑢𝑖𝑐𝑡 < 0)).  The standard conditional quantile regression approach involves 

finding the values of the coefficients that minimize ∑ 𝜌𝜏(𝑙𝑛𝑃𝑖 − 𝑥𝑖𝛽 − 𝛿𝑡 − 𝜆𝑐 + 𝜃𝑡𝑂𝑟𝑎𝑛𝑔𝑒𝑖)𝑖 . 

                                                           
2 In the empirical application, I use a tri-cube kernel for the weight function, and a window of 25% of the 

nearest observations.  Since my focus is on the treatment area, I estimate equation (2) using only  the treatment census 

block group centroids as target points, which leads to 388 target points.  In practice, this approach involves estimating 

388 regressions using the 25% of the sample observations that are closest to the target centroid and weights that decline 

with straight-line distance from the centroid. 
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 The conditional quantile approach is readily adapted to the locally weighted regression 

approach (McMillen, 2015).  At a target location 𝑧, the weight given to observation i is given by 

the kernel weight function 𝑤𝑖(𝑧), and the quantile estimates for quantile 𝜏 at location z is obtained 

by minimizing a weighted version of the standard quantile objective function: 

 ∑𝑤𝑖(𝑧)𝜌𝜏(𝑙𝑛𝑃𝑖 − 𝑥𝑖𝛽(𝑧𝑖) − 𝛿𝑡(𝑧𝑖) − 𝜆𝑐(𝑧𝑖) + 𝜃𝑡(𝑧𝑖)𝑂𝑟𝑎𝑛𝑔𝑒𝑖)
𝑖

 (3) 

   

As with a standard linear regression model, the estimates can be interpolated from the targets to 

other locations in the sample.  The locally weighted approach makes it possible to determine 

whether the effect of the new transit line varies across locations and by price. 

3. Data 

The data set employed in this paper is the same as in McMillen and McDonald (2004), with 

three significant exceptions:  I use data for a larger region, do not limit the sample to repeat sales, 

and now have data for sales from 1992 as well as for other years around the opening of the new 

EL line.  Construction on the new line began in 1985 and it opened on October 31, 1993.  The data 

set for this paper includes all sales of single-family homes that sold in Chicago between 1988 and 

1996.  The primary data source is the Illinois Department of Revenue, which collects data on sales 

to conduct their annual assessment ratio studies.  Data on structural characteristics come from the 

Cook County Assessor’s Office. 

Descriptive statistics are presented in Table 1.  The three time intervals are based on the 

finding in McMillen and McDonald (2004) that the new transit line had a strong effect on house 

prices near the new line by 1991.  Since the line opened near the end of 1993, the three time periods 

correspond approximately to a time before the new line was reflected significant prices (1988-

1990), the time when prices increased in anticipated of the opening of the line (1991-1993), and 
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the time after the line opened (1994-1995).  The left panel of Figure 1 shows the location of 

Chicago of the color-coded EL lines, and the right panel adds the locations of the sales that are 

within 0.5 miles of the lines. 

Table 1:  Descriptive Statistics (13,795 sales) 

Variable 1988-90 1991-93 1994-96 1988-90 1991-93 1994-96 

Log of Sale Price 11.020 11.372 11.466 11.398 11.603 11.788 

Log Building Area 6.985 7.039 7.015 7.268 7.303 7.319 

Log Lot Size 8.148 8.165 8.175 8.151 8.147 8.126 

Rooms 5.208 5.348 5.260 6.251 6.344 6.426 

Bedrooms 2.780 2.855 2.785 3.260 3.297 3.307 

Basement 0.646 0.630 0.593 0.706 0.675 0.687 

Bathrooms 1.268 1.299 1.285 1.563 1.643 1.688 

Air Conditioning 0.098 0.100 0.101 0.194 0.215 0.244 

Attic 0.408 0.405 0.344 0.473 0.430 0.426 

Brick 0.530 0.547 0.516 0.440 0.461 0.467 

1-Car Garage 0.278 0.259 0.281 0.264 0.280 0.284 

2+ Car Garage 0.492 0.495 0.462 0.452 0.441 0.449 

Age / 10 6.171 6.088 6.448 7.266 7.356 7.450 

Distance to EL Line 2.505 2.559 0.286 0.249 0.243 0.245 

Number of Observations 817 881 987 3,365 3,903 3,842 
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Figure 1:  EL Lines and Sales Locations 

         

 

4. Difference in Difference Results 

The base DD results are presented in Table 2.  The estimated coefficients for the structural 

characteristics are generally as expected.  Prices are higher for newer, larger homes that are made 

of brick and on larger lots, and have more rooms, bathrooms, and  a garage.  Sales prices rose 

steadily throughout the sample period, with an increase of nearly 50% between 1988 and 1996.  

Homes located near the future Orange Line sold for lower prices than homes along existing EL 

lines in the base year of 1988. 

Consistent with the repeat sales results of McMillen and McDonald (2004), the Orange 

Line first began to have a significant effect on house prices in 1991, two years prior to the opening 

of the line.  The biggest effect of the new line was in 1992, the year prior to its opening.  By 1996, 
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the price premium associated with the new line drops to insignificance, and prices on near the 

Orange Line are estimated to be approximately the same as prices near other lines. 

Table 2:  Base Regression Results 

Variable Estimate Std. Err. T-Value Variable Estimate Std. Err. T-Value 

Log Building Area 0.278 0.021 0.000 1991 Sale 0.215 0.017 0.000 

Log Lot Size 0.358 0.020 0.000 1992 Sale 0.292 0.020 0.000 

Rooms 0.010 0.004 0.012 1993 Sale 0.335 0.018 0.000 

Bedrooms 0.008 0.007 0.292 1994 Sale 0.379 0.018 0.000 

Basement 0.014 0.010 0.168 1995 Sale 0.401 0.017 0.000 

Bathrooms 0.047 0.008 0.000 1996 Sale 0.482 0.019 0.000 

Air Conditioning 0.010 0.010 0.319 Orange x 1989 0.014 0.025 0.561 

Attic -0.025 0.009 0.006 Orange x 1990 0.033 0.030 0.265 

Brick 0.043 0.011 0.000 Orange x 1991 0.129 0.032 0.000 

1-Car Garage 0.071 0.012 0.000 Orange x 1992 0.155 0.033 0.000 

2+ Car Garage 0.076 0.011 0.000 Orange x 1993 0.098 0.029 0.001 

Age/10 -0.033 0.003 0.000 Orange x 1994 0.096 0.030 0.001 

Near Orange Line -0.131 0.026 0.000 Orange x 1995 0.122 0.031 0.000 

1989 Sale 0.100 0.016 0.000 Orange x 1996 0.023 0.032 0.463 

1990 Sale 0.183 0.017 0.000     
Notes:  The dependent variable is the natural logarithm of sale price.  The number of observations is 13,795.  

The regression includes 388 fixed effects for census block group, and standard errors are clustered at the 

block group level.  The R2 is 0.807. 

 

Table 3 presents results for variations in the maximum distance from an EL station.  The 

estimated coefficients for Orange x Year are not statistically significant when the ring is small 

(0.25 miles is equivalent to about two blocks in Chicago’s regular grid system).  Figure 1 shows 

why this result is not surprising:  the Orange Line goes through an area of light industry because 

it was built along existing rail rights-of-way.  The estimated treatment effects become significant 

when the maximum distance is increased to 0.50 miles, and it remains both stable and statistically 

significant when the distance is increased.  For all distances, the estimated appreciation rate near 

the Orange Line stations is not statistically different from the rates near other EL stations for 1989 

and 1990, and the anticipated effects are first evident in 1991 for all distances. 
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Table 3:  Variation of Maximum Distance from EL Stations 

 0.25 0.50 0.75 1.00 1.25 1.50 

Near Orange Line 
0.346 

(0.065) 

-0.131 

(0.026) 

-0.119 

(0.076) 

-0.103 

(0.066) 

-0.036 

(0.047) 

-0.040 

(0.038) 

Orange x 1989 
-0.078 

(0.044) 

0.014 

(0.025) 

-0.014 

(0.018) 

-0.021 

(0.016) 

-0.013 

(0.014) 

-0.008 

(0.012) 

Orange x 1990 
-0.035 

(0.055) 

0.033 

(0.030) 

0.032 

(0.020) 

0.022 

(0.017) 

0.026 

(0.014) 

0.025 

(0.013) 

Orange x 1991 
0.033 

(0.059) 

0.129 

(0.032) 

0.105 

(0.022) 

0.093 

(0.018) 

0.081 

(0.016) 

0.078 

(0.015) 

Orange x 1992 
-0.012 

(0.080) 

0.155 

(0.033) 

0.128 

(0.025) 

0.118 

(0.021) 

0.116 

(0.019) 

0.117 

(0.019) 

Orange x 1993 
0.025 

(0.059) 

0.098 

(0.029) 

0.095 

(0.021) 

0.094 

(0.019) 

0.093 

(0.017) 

0.085 

(0.017) 

Orange x 1994 
0.042 

(0.046) 

0.096 

(0.030) 

0.102 

(0.022) 

0.095 

(0.020) 

0.099 

(0.018) 

0.094 

(0.017) 

Orange x 1995 
0.036 

(0.048) 

0.122 

(0.031) 

0.111 

(0.023) 

0.098 

(0.020) 

0.096 

(0.018) 

0.096 

(0.017) 

Orange x 1996 
-0.033 

(0.075) 

0.023 

(0.032) 

0.048 

(0.025) 

0.058 

(0.022) 

0.061 

(0.019) 

0.063 

(0.018) 

Number of Observations 3,948 13,795 24,133 33,260 41,232 49,516 

Number of Fixed Effects 225 388 511 572 636 660 

R2 0.834 0.807 0.792 0.783 0.782 0.781 

Notes:  The dependent variable is the natural logarithm of sale price.  Clustered standard errors are presented 

in parentheses below the estimated coefficients. 
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5. Local Spatial Variation 

The base DD specification leads to an estimate of the average treatment effect for each year 

from 1989 – 1996.  In fact, there is substantial variation in the neighborhoods served by the Orange 

Line.  While much of the line runs through formerly industrial areas, the northeastern end includes 

a highly residential area that is also well served by other EL lines.3  In general, areas north of the 

Orange Line are more likely to be industrial, while areas south of the line are apt to be residential.  

The last station at the southwest end of the Orange Line serves Midway Airport, which itself is in 

the middle of a residential area.  McMillen and McDonald (2004) report that average weekday 

ridership ranged from 1,253 at the Ashland Ave. station to 8,531 at the Midway station in 2000.  

The range in average ridership rose slightly to 1,629 – 8,947, again with Ashland Ave. and Midway 

being the extremes.  Given the range of neighborhood conditions and ridership, it is reasonable to 

expect that the effect of the Orange Line may differ spatially. 

I estimate a set of locally weighted regressions to allow the coefficients of the base 

regression to vary in the are served by the Orange Line.  The target points are the 388 census block 

group centroids represented in the Orange Line sample area.  I then calculate the straight-line from 

every property in the data set to each target point.  Let 𝑑𝑖 represent the distance from observation 

i to a target point, and since the window size is set at 25%, let 𝑑∗ be the 25th percentile of all of 

these distances.  The weight provided by observation i in estimating the locally weighted 

regression at the target point is given by the tri-cube function:  𝑘(𝑑𝑖) = (1 − (𝑑𝑖/𝑑
∗)3)3 for 𝑑𝑖 ≤

𝑑∗ and 𝑑𝑖 = 0 otherwise.  Using matrix notation to re-write equation (1) as 𝑙𝑛𝑃 = 𝑊𝛾, the LWR 

                                                           
3 From southwest to northeast, the order of the stations shown in the figures is Midway, Pulaski, 

Kedzie, Western, 35th/Archer, Ashland, Halsted, Roosevelt.  The Roosevelt St. station is not included in 

this analysis because it is also a stop for the Red and Green lines.  The data used for ridership in 2017 are 

drawn from the Chicago Transit Authority’s Annual Ridership Report for 2017:  

https://www.transitchicago.com/assets/1/6/2017_CTA_Annual_Ridership_Report.pdf.  

https://www.transitchicago.com/assets/1/6/2017_CTA_Annual_Ridership_Report.pdf
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estimates are 𝛾(𝑧) = (∑ (𝑘(𝑑𝑖)𝑤𝑖𝑤𝑖
′)−1𝑖 )(∑ (𝑘(𝑑𝑖)𝑤𝑖𝑙𝑛𝑃𝑖)

−1
𝑖 ), where 𝑤𝑖 is a column vector 

holding the elements of W for observation i.  Fixed effects for census block groups are omitted 

from the list of explanatory variables because locally weighted regressions take account of spatial 

effects by allowing the coefficients to vary smoothly over space rather than confining spatial 

variation to discrete shifts at block group boundaries in the intercept alone. 

The estimated results for the Orange x 1992 variable are shown in Figure 2.  The results 

are representative of the spatial variation for other years also.  The results imply that the rate of 

appreciation for 1988 - 1992 varies from 36.0% to 61.1%.  Appreciation rates are highest at the 

Ashland Ave. and Halsted St. stations, which are the two stops to the extreme northeast of Figure 

2.  Estimated appreciation rates are also high on the northwest side of the Western Ave. station, 

which is in the middle of the figure.  Estimated rates are lower at the Midway end of the line.  The 

results do not contradict the DD estimates; instead, they provide interesting new information. 

Figure 2:  LWR Coefficients for Orange x 1992 
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6. Quantile Regression Results 

Table 4 shows the results of quantile regression results for three quantiles, τ = 0.10, 0.50, 

and 0.90.  The regressions are estimated using sales from areas near all the EL lines, and the results 

are nearly directly comparable to the results shown in Table 2.  However, as estimating quantile 

regressions with a large number of fixed effects is cumbersome, I employ a two-stage procedure 

proposed by Canay (2011) that reduces the dimension of the problem.  The first stage is the basic 

linear regression model of equation (1), which includes controls for both census block groups and 

the year of sale.  The first-stage regression provides estimates of the 388 census block group fixed 

effects, 𝜆𝑐.  Under the assumption that these effects do not vary across quantiles, the second stage 

is a standard quantile regression of 𝑙𝑛𝑃 − 𝐷𝛼̂ on the remaining variables in equation (1). 

Several interesting patterns emerge from Table 4 even though the results are shown for 

only three quantiles.  First, note that the initial discount associated with being closer to the Orange 

Line than to other lines is larger at -0.188 for τ = 0.90 than for either the median (-0.110) or τ = 

0.10 (where the coefficient for Orange is -0.051.)  This pattern suggests that changing the value 

of Orange from 0 to 1 is associated with a leftward shift in the distribution of log sales prices, with 

a larger shift at the right side of the distribution.  Second, note that the coefficients for Orange x 

Year are statistically insignificant for 1989 and 1990, but they generally are significant for 1991 – 

1996. Finally, the coefficients for both τ = 0.10 and τ = 0.90 tend to be larger in magnitude than at 

the median, although the pattern is not uniform.   
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Table 4:  Quantile Regression Results 

Variable 

Quantile = 0.10 Quantile = 0.50 Quantile = 0.90 

Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Intercept 5.787 0.183 6.338 0.093 6.986 0.145 

Log Building Area 0.230 0.028 0.288 0.012 0.295 0.016 

Log Lot Size 0.430 0.013 0.355 0.007 0.294 0.014 

Rooms 0.020 0.006 0.002 0.003 0.006 0.004 

Bedrooms 0.010 0.010 0.010 0.005 0.010 0.007 

Basement 0.064 0.013 0.002 0.007 -0.036 0.009 

Bathrooms 0.021 0.011 0.048 0.006 0.079 0.009 

Air Conditioning 0.011 0.013 -0.005 0.007 0.006 0.009 

Attic -0.005 0.011 -0.024 0.005 -0.029 0.008 

Brick 0.007 0.013 0.029 0.006 0.064 0.008 

1-Car Garage 0.142 0.016 0.048 0.007 0.022 0.009 

2+ Car Garage 0.126 0.015 0.058 0.007 0.031 0.009 

Age / 10 -0.063 0.002 -0.029 0.001 -0.012 0.001 

Orange Line -0.051 0.035 -0.110 0.019 -0.188 0.023 

1989 Sale 0.117 0.034 0.121 0.013 0.067 0.020 

1990 Sale 0.273 0.029 0.198 0.013 0.115 0.020 

1991 Sale 0.267 0.032 0.224 0.012 0.146 0.021 

1992 Sale 0.330 0.030 0.300 0.012 0.234 0.019 

1993 Sale 0.389 0.030 0.331 0.013 0.272 0.021 

1994 Sale 0.453 0.028 0.371 0.012 0.309 0.020 

1995 Sale 0.468 0.029 0.388 0.013 0.354 0.021 

1996 Sale 0.529 0.028 0.459 0.013 0.430 0.021 

Orange x 1989 0.056 0.051 -0.026 0.025 0.007 0.031 

Orange x 1990 -0.046 0.055 -0.002 0.025 0.057 0.031 

Orange x 1991 0.104 0.057 0.102 0.027 0.125 0.029 

Orange x 1992 0.154 0.046 0.133 0.023 0.135 0.027 

Orange x 1993 0.069 0.045 0.094 0.025 0.107 0.029 

Orange x 1994 0.065 0.043 0.065 0.024 0.081 0.028 

Orange x 1995 0.099 0.043 0.091 0.024 0.080 0.031 

Orange x 1995 0.006 0.049 0.040 0.024 0.023 0.030 
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Figure 3: Coefficients and T-Values  for Orange x Year by Quantile 

 

 

Selecting only three sets of quantile regression results can be misleading because the 

coefficient estimates are not necessarily smooth across quantiles.  Figure 1 displays the coefficients 

and t-values for Orange x 1989, Orange x 1992, and Orange x 1995 across quantiles ranging from 

0.04 to 0.96.  The left panel shows clearly that appreciation rates are higher at lower quantiles, and 

the estimates are highly significant in 1992 and 1995.  This result implies that the rightward shift 

in the price distribution was higher in the low-price end of the distribution. 

Figure 4 shows the results for the 1992 dummy variable for locally weighted versions of 

the quantile regressions for τ = 0.10, 0.50, and 0.90.  As was the case for the locally weighted 

regressions, I limit the analysis to the observations that are closer to a station on the Orange Line 

than to other stations because the objective is to display the spatial variation of appreciation rates 

within the area served by the Orange Line.  I again use a tri-cube kernel with a 25% window, and 

I omit the census block group fixed effects. 
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Figure 4:  Locally Weighted Quantile Results for Year = 1992 
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 The estimates are more variable for τ = 0.10 than for the other two quantiles, with estimates 

ranging from 0.169 to 0.727, to a range of 0.298 – 0.589 for τ = 0.50 and 0.310 – 0.568 for τ = 

0.90.    As was the case for the locally weighted regression estimates, the estimated appreciation 

rates  are highest for the stations on the northeast end of the map, which is closer to downtown 

Chicago.    Appreciation rates are also high for the Western Ave. station in the middle of the map, 

and are particularly high relative to the other quantiles for  τ = 0.90. 

 Although it is common to present coefficient estimates at a small number of quantiles, 

estimating the quantile regressions at many values of τ makes it possible to show how the entire 

distribution of log sales prices changes when the values change for one of the explanatory 

variables.  The approach is discussed in detail in McMillen (2015).  Consider the case of the locally 

weighted quantile regressions.  The estimated log sale price for observation i and for quantile τ is 

 𝑥𝑖𝛽̂(𝑧𝑖, 𝜏) + 𝛿89(𝑧𝑖, 𝜏) + ⋯+ 𝛿96(𝑧𝑖, 𝜏) (4) 

   

Given the actual values of x, the predicted log sale price for observation year in 1988 is simply 

𝑥𝑖𝛽̂(𝑧𝑖, 𝜏), and the  estimate for, e.g., 1992 is just 𝑥𝑖𝛽̂(𝑧𝑖, 𝜏) + 𝛿92(𝑧𝑖, 𝜏).  With n observations, 

these expressions imply n predicted values of the log sale price for 1988 and n predicted values 

for 1992, all at quantile τ.  Having estimated equation (4) for Q quantiles, equation (4) implies nQ 

predicted values for these two years (or any other year).  Kernel density functions then can be used 

for the nQ estimates to show how the entire distribution of log sales prices is predicted to have 

change from 1988 to 1992.   

 Figure 5 shows the results of these calculations for 1988, 1992, and 1995 after estimating 

locally weighted quantile regression for τ = 0.04, 0.06, …, 0.96.  The distribution of log sales 
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prices shifts well to the right between 1989 and 1992, the latter being the year when the new 

Orange Line is estimated to have the largest effect on prices.  The distribution shifts further to the 

right in 1995.  The increase in the height of the functions over time implies a significant decline in 

the overall variation in log sales prices.  Although it is hard to tell directly from Figure 5, the 

pattern of the variation by quantile in the coefficients for Year = 1992 implies that the reduction 

in variation comes about by a greater increase in the left side of the distribution than at the upper 

end of the distribution. 

Figure 5:  Predicted Log Sale Price Densities 
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7. Conclusion 

Estimating the effect of a new transit line on property values is representative of the 

situations where difference in difference estimation approaches have been used routinely in urban 

economics.  Researchers tend to focus on the assumption of common parallel trends for treatment 

and control areas when attempting to verify the validity of the approach, an assumption that is 

virtually impossible to meet in housing markets.  Any event that is anticipated prior to the formal 

announcement is likely to be at least partially capitalized into house prices, and house prices do 

not necessarily appreciate uniformly across neighborhoods even within an urban area.  An 

additional assumption – that there are clearly defined treatment and control areas – is sidestepped 

by varying the size of rings around a treatment site, often for both the treatment and control areas.  

This approach is in contrast to the typical approach taken in the earlier urban literature which 

attempted to measure how prices varied continuously from the treatment site, recognizing that 

when “treatment” is a discrete site like a rail station, not all sites within a zone receive the same 

level of treatment. 

This paper revisits the McMillen and McDonald (2004) analysis of the opening of 

Chicago’s Orange Line in 1993 to show how locally weighted and quantile regression methods 

can be used to extend the standard DD analysis to show how prices vary within treatment areas 

over space and across the price distribution.  While McMillen and McDonald focused on repeat 

sales from the area within 1.5 miles of the Orange Line, I estimate locally weighted versions of 

the standard DD model using all sales close to both the Orange Line and others lines on Chicago’s 

EL system.  As was the case with the earlier study, the results show that the new line began to be 
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capitalized into house prices at least two years prior to its opening, with the largest effect coming 

in 1992, the year prior to the opening.   

But there is significant variation in the magnitude of this effect within the area close to the 

new line.  Locally weighted versions of the DD model imply that the rate of appreciation for 1988 

- 1992 varies from 36.0% to 61.1%, with especially high rates around stations closer to downtown 

Chicago.  Quantile regressions imply higher rates of appreciation and more variability in 

appreciation rates for relatively low-priced homes. Together, these results suggest a much more 

complex set of patterns than is implied by the simple average treatment effect of a DD model. 
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