The Economic Implications of House Price Capitalization: A Survey of an Emerging Literature

Christian A. L. Hilber

© 2011 Lincoln Institute of Land Policy

Lincoln Institute of Land Policy Working Paper

The findings and conclusions of this Working Paper reflect the views of the author(s) and have not been subject to a detailed review by the staff of the Lincoln Institute of Land Policy.

Contact the Lincoln Institute with questions or requests for permission to reprint this paper. help@lincolninst.edu

Lincoln Institute Product Code: WP11CH1

About the Author

Christian Hilber London School of Economics Department of Geography and Environment Houghton Street, London WC2A 2AE United Kingdom

Phone: +44-20-7107-5016 Fax: +44-20-7955-7412 E-mail: c.hilber@lse.ac.uk.

Acknowledgements

I wish to thank Dan McMillen, Joan Youngman, and Semida Munteanu for their encouragement to write this paper. Financial support from the Lincoln Institute of Land Policy is gratefully acknowledged. I thank Paul Cheshire, Steve Gibbons, Teemu Lyytikäinen, Henry Overman and especially Wouter Vermeulen for insightful discussions that benefited this paper.

Abstract

House price capitalization has long been thought to be a means of testing for efficiency in the local public sector. In this article I argue that the extent of house price capitalization itself may have important economic implications. In doing so I synthesize an emerging literature that explores the conditions under which public and private investments and intergovernmental transfers are capitalized into local house prices and the broader implications of such capitalization. The main insights are: (i) House price capitalization is more pronounced in locations with strict regulatory and/or geographical/physical supply constraints; (ii) capitalization can – under certain conditions – induce the provision of durable local public goods and club goods; and (iii) capitalization effects – which are habitually ignored by policy makers – have important adverse consequences for a wide range of policies such as intergovernmental aid or the mortgage interest deduction.

Table of Contents

Introduction	1
Related Past Literature	2
The roots of the capitalization literature: Capitalization and efficiency	
Empirical evidence on the extent of capitalization of fiscal variables	
Housing demand price elasticity, local supply constraints and the extent of hou	se price
capitalization	8
Why does it matter whether fiscal variables are capitalized	8
Theoretical considerations: Do local supply constraints matter	9
Physical versus regulatory supply constraints: Theory and evidence	12
Capitalization and incentives to invest: A first step towards a 'taxonomy'	14
Local public goods: The case of local public schools	
Club goods: The case of local social capital	
Unintended redistribution and other unintended effects of capitalization	19
Redistributive effects: Theoretical considerations and empirical evidence	19
Other unintended effects: Offsetting of policy induced incentives	
Conclusions and Scope for Future Research	20
References	23

The Economic Implications of House Price Capitalization: A Survey of an Emerging Literature

Introduction

Municipalities and neighborhoods differ enormously in their levels of local public good provision, accumulation of social capital or private investments in the housing stock. Some localities – often suburbs that surround large and prosperous cities – have excellent public schools and other public services, as well as close ties among helpful neighbors. These places are typically also exceptionally well maintained. Other locations, however, are confronted with appalling public services, non-existing or dysfunctional social networks and decay. Inner city neighborhoods in less prosperous cities or more rural locations are often hampered by some or all of these problems.

One potential explanation for these stark differences in local public and private investments is that places differ in their natural amenities and that better-off households sort into localities with more 'desirable' characteristics.¹ 'Desirable locations' can be expected to end up with more affluent residents and stronger positive peer effects – well-educated and well-off residents may benefit from the presence of other well-educated and well-off residents. This sorting process may well result in better local public services, stronger social ties and better maintained housing in places that are otherwise more desirable as well.² Yet public good- and club good-provision is not always superior in physically desirable locations or put differently: often places with excellent public good- or club good-provision are not very exceptional in terms of their natural amenities. Other factors, besides natural amenities and income-sorting, likely matter too.

This paper explores one particular alternative mechanism that may cause local public and private investments to vary significantly across space: Fiscal variables – local public services and taxes – may be capitalized into property prices and these capitalization effects in turn may provide incentives to local property owners (homeowners and present landlords) to (i) vote in favor of investments into their communities and neighborhoods and/or (ii) carry out private investments that exert positive externalities (e.g., private contributions to local social capital,

¹ Desirable amenities raise local property values and thereby provide an exclusion mechanism that prevents lower income households from sorting into the communities that provide these amenities. This mechanism is often further reinforced by minimum lot size restrictions or similar regulatory instruments.

² This should be particularly true in countries with fiscal decentralization, where local municipalities have the power to raise local taxes (e.g., property taxes in the United States or income taxes in Switzerland) and determine the provision of local public services. In such settings where better-off people buy into jurisdictions with better public services, voting often reinforces these services. This may be in part because better-off individuals are often better informed and in part because they are not interested in redistribution – the problem in poor areas is often that their residents habitually vote in local politicians who try to redistribute leading to rich flight and diversion of resources away from useful local public goods. However, even in centralized countries such as the United Kingdom, where local authorities tend to have little political and fiscal power, sorting by income may explain spatial differences in the provision of local services. Such spatial differences may persist because (i) well-off households are more influential in the political process and therefore can ensure that financial resources are directed towards the areas in which they live, (ii) children from well-off parents are less likely to have 'special needs' and are therefore less costly to educate in local public (state) schools, or (iii) well-off parents and their children benefit from positive peer effects. That is, communities with well-off residents may end up with better 'local outcomes' even though they receive the same funding amount or even less per capita.

creation of scenic gardens or maintenance of the housing stock). To the extent that the degree of house price capitalization effects vary across locations, capitalization induced incentives may explain spatial variation in the provision of local public goods and club goods.

Another characteristic of house price capitalization is that it can cause significant redistribution. For example, federal or central government grants or inter-jurisdictional transfers that aim to help disadvantaged households may have perverse effects in that they help well-off property owners (including absentee landlords) rather than deprived renters. These redistribution effects are 'hidden' and quite possibly not intended by policy makers.

Finally, house price capitalization may not only have adverse redistribution effects but may also offset the intended incentive effects of certain policies. For example, the mortgage interest deduction (MID) aims to improve homeownership attainment. However, to the extent that the MID generates greater demand for owner-occupied housing it may also increase house prices, potentially offsetting the policy induced incentives to own homes. In fact, to the extent that future MID benefits are capitalized into higher house prices, the MID may decrease the likelihood that down-payment constrained potential house-buyers may qualify for a mortgage. Similarly, MID-induced higher house prices may increase housing related transaction costs as these are typically proportional to house prices. This in turn reduces the incentives of mobile – often young – households to own. Hence, the net effect of the MID on homeownership may, for some groups, be negative in places with substantial capitalization.

The aim of this paper is to review and synthesize the existing research that explores the incentive and redistribution effects and unintended consequences of house price capitalization. This research ties into a well-established related literature on the role of capitalization for local public sector efficiency. This related literature and evidence of the capitalization of local public goods and taxes into house prices is briefly reviewed in the next section. Section 3 explores under what conditions fiscal variables and other local attributes – such as social capital – are capitalized into property prices. In particular, I discuss the role of the demand price elasticity and of local supply constraints – both, constraints of a regulatory and geographical/physical nature. Section 4 examines the incentive effects of capitalization for the provision of local public goods and club goods. In particular, I investigate the role of homeownership, transaction costs and the corresponding expected duration in the property. Section 5 discusses the distributional consequences of house price capitalization, specifically the 'hidden' redistribution effects and other unintended consequences induced by capitalization. The last section concludes and briefly discusses possible future directions in this fertile area of research.

Related past literature

The roots of the capitalization literature: Capitalization and efficiency

The point of departure of the theoretical considerations is the proposition most prominently expressed by Musgrave (1939) and Samuelson (1954) that there is no viable market mechanism that reveals individual preferences and ensures the optimal provision of public goods. Individuals may always have an incentive to free-ride on other individuals' contributions to public goods, necessitating a political solution to overcome market failure. Yet, as Tiebout (1956) pointed out, this pessimistic view may not apply in the case of *local* public goods. Tiebout proposed that consumer mobility and inter-jurisdictional competition,

at least under restrictive assumptions³, may generate an efficient provision of local public services. This proposition has subsequently become known as the 'Tiebout-hypothesis'.

Whereas Tiebout did not consider the role of the land market and capitalization effects in his theoretical analysis, in another seminal paper, Oates (1969) suggested that if residents indeed 'vote with their feet' for local public goods, as argued by Tiebout, then fiscal differentials among communities should be capitalized into house prices. This proposition has later been labeled the 'capitalization-hypothesis'. Using a sample of New Jersey municipalities, Oates did indeed find evidence suggesting that fiscal differentials are capitalized to a large extent into house prices. That is, while all else equal property taxes reduce house prices, expenditures on local public schools have the opposite effect. Oates originally interpreted this finding as evidence in favor of the 'Tiebout-hypothesis'.

Oates' (1969) study induced a voluminous theoretical literature that by and large rejected his proposition that capitalization provides a test of the Tiebout-hypothesis. Instead the literature reached consensus on three points: (i) fiscal differentials can be expected to be capitalized into house prices, (ii) existence of capitalization is consistent with foot-voting, and (iii) this does not necessarily imply efficiency of local public good provision. Chaudry-Shah (1988) and Ross and Yinger (1999) provide excellent surveys summarizing the relevant theoretical and empirical literature surrounding this debate.

A few studies that followed up on Oates' (1969) seminal paper are particularly noteworthy as they have important implications for empirical research. In a series of articles Brueckner (1979, 1982 and 1983) developed a bid-rent model framework of property value determination, which considers a world that is *not* in perfect Tiebout-equilibrium. In Brueckner's theoretical framework, a local government finances the provision of local public services from a local property tax, with the objective of maximizing the value of its housing stock. Households with homogeneous tastes but heterogeneous incomes are freely mobile between locations, so that they bid for units until the utility from dwelling is the same everywhere. As a consequence, both the households' marginal willingness to pay for local public services and the local property tax are fully capitalized into house prices. The local government should set the level of public expenditures such that the capitalized tax needed to finance a further rise in services would just offset the capitalized willingness to pay for them. When this condition is met, the public expenditure level is *efficient* in that it satisfies the Samuelson condition: at the margin, the aggregate willingness to pay for additional services equals the cost of providing them.

Suppose now that for some reason spending on public services is below the level where it maximizes the value of the aggregate housing stock. This could be because of institutional constraints (e.g., property tax limits) or simply because local public policy is the outcome of a political process in which many conflicting interests interact. By implication, the capitalized willingness to pay for an increase in expenditure would exceed the capitalized tax needed to pay for it and, hence, an increase in expenditure would capitalize 'more than fully' into house prices. Conversely, overspending on local public services would lead to less than full

3

³ The restrictive assumptions are: costless mobility, perfect knowledge of fiscal packages in all municipalities, large number of competing local jurisdictions, endogenous community size, no external economies or diseconomies, no multidimensional preferences, no spill-over losses of local public good provision to surrounding/other jurisdictions, no land or labor market, and no commercial real estate. See Tiebout (1956) for further details or the survey article by Chaudry-Shah (1988) for further interpretation of the assumptions and their implications.

capitalization. This reasoning can be illustrated graphically: aggregate property values of a local jurisdiction are an inverted U-shaped function of the level of public good provision.

Taking this theoretical model to the data, in an empirical equation that omits local taxes, a positive coefficient on local public spending can be interpreted as under-provision of local public services, while a negative coefficient can be interpreted as over-provision. A coefficient that is not statistically different from zero implies optimal local public good provision. See Brueckner (1979 and 1982) for early empirical applications and Bradbury *et al.* (2001) and Hilber and Mayer (2009) for more refined empirical analyses in the same spirit.⁴

In a similar vein, within the Brueckner framework, full capitalization of any 'windfall gain' at the local level – for example state educational aid in the US or central government grants in the UK – implies an *efficient* level of local public spending (see Barrow and Rouse 2004 and Hilber *et al.* 2011).

However, Brueckner's framework builds on a number of restrictive assumptions, perhaps most importantly; costless mobility, homogeneity of tastes and perfect substitutability of locations. If places are inherently different and households vary in their appreciation for these differences and/or in their relocation costs, the demand curve for living in a certain place becomes downward sloping (see Arnott and Stiglitz, 1979, for an early discussion of this argument; Section 3.2 examines it in more detail). The proposition of a downward sloping local demand curve has important implications for the provision of local public services: For example, spending on services for the elderly can be expected to capitalize less strongly than spending on education. This is because in most places an elderly household is less likely than a household with young children to be a 'marginal homebuyer'. (The reverse argument of course applies to retirement communities in states such as Florida or Arizona.) Furthermore, downward sloping demand introduces a role for supply conditions: capitalization can be expected to be stronger in places where housing supply is less elastic, either because of limited availability of developable land (physical supply constraints) or because of regulatory constraints on new residential development (I discuss this point in Section 3.3).

Another stringent assumption in the Brueckner framework is that additional spending is not 'wasted'. Yet, additional resources may not only be used to provide more and/or better public services but may be devoted to economic rents, e.g., by increasing the salaries of existing public sector workers or by granting additional perks, leading not only to Pareto-inefficient but also X-inefficient provision of public services (see e.g. Wykoff 1990). To the extent that additional spending is wasted, all else equal, it does not increase the desirability of a location, will not increase housing demand and will therefore leave house prices unaffected. Of course, all else may not be equal: to the extent that local spending is funded by local taxes rather than federal or central government grants (which – from the perspective of local jurisdictions – can

⁴ Bradbury *et al.* (2001) provide evidence for underspending on education in a sample of Massachusetts municipalities that were constrained by the property tax limit 'Proposition 2½'. The authors speculate that underspending on education was not only related to institutional constraints, but also to a conflict of interests between households with and without children. In this context, Hilber and Mayer (2009) document that whereas the median homebuyer outside of central cities in the US has school-aged children, the median voter does not. Hence, house prices, which are determined by the marginal homebuyer, may reflect a strong preference for spending on education, from which the median voter derives few or no direct benefits. To the extent that the median voter puts more weight on the tax required for educational spending than on the capitalization of good schools into property values, the political process may yield underprovision of educational services from the perspective of the marginal homebuyer.

be interpreted as 'windfall gains'), the fiscal differential can be expected to be negatively capitalized.

In conclusion, one ought to be very cautious in inferring normative claims from an empirical analysis of capitalization. In an empirical specification that omits local taxes, a zero coefficient on local public services, may not be interpreted as a Pareto-efficient outcome. In a similar vein, full capitalization of federal, state or central government grants into local house prices, all else equal, may not necessarily imply allocative- and/or cost-efficiency. This is because full capitalization could be a combination of various opposing effects. For instance, heterogeneity in tastes for education could lead to underspending from the perspective of the marginal homebuyer (implying more than full capitalization) and at the same time, some of the aid or grants could be wasted on bureaucracy (implying less than full capitalization), so that on balance full capitalization could not be rejected empirically. Generally, in settings where locations are not perfect substitutes, relocation costs are quite high and vary significantly between different types of households, households are heterogeneous in many other respects than their income, and housing supply price elasticities vary across locations, the extent of capitalization of fiscal variables into local house prices may contain little information content that would permit making any efficiency claims (see also Ross and Yinger 1999 and Hilber et al. 2011).

Another important theoretical question, which has implications for empirical work, is whether house price capitalization is a characteristic of long-run equilibrium. Building on Brueckner's framework but also integrating a voting process, Yinger (1982) suggests that capitalization can persist in long-run equilibrium and is not eliminated by supply responses. He concludes that efficient outcomes depend on local residents voting for the efficient level of services; foot-voting alone does not guarantee efficient levels of public goods.

In a similar vein, a number of theoretical papers explored whether capitalization can persist in Tiebout-equilibrium. Edel and Sclar (1974), Hamilton (1976a) and Epple *et al.* (1978), among others, proposed that in a world with completely elastic supply of local communities, public sector variables should be uncorrelated with house prices in full Tiebout-equilibrium. Hence, capitalization should be interpreted as a disequilibrium phenomenon that will disappear in the long-run. On the other hand Epple and Zelenitz (1981) demonstrated that capitalization can exist in equilibrium if community boundaries are fixed exogenously, a reasonable assumption, at least in the short and medium run.

Empirical evidence on the extent of capitalization of fiscal variables

On the empirical side, dozens if not hundreds of mostly cross-sectional studies followed up on Oates' (1969) empirical analysis and suggested various improvements. Chaudry-Shah (1988), Dowding and Biggs (1994) or Ross and Yinger (1999) provide excellent reviews of the earlier literature and in particular of the earlier methodological advances.

The vast majority of the earlier studies explored the capitalization of fiscal variables – mainly local expenditures on public schools and property taxes – into house prices and found substantial if not full capitalization (e.g., Oates 1969 and 1973; King 1977; Stull and Stull

⁵ Relocation costs are particularly high for homeowners but also for households in public rental housing. Public housing is not very relevant in the US but in many countries a large share of the housing stock is public (e.g., in Holland or Scotland).

1991; Man and Bell 1996). Reinhard (1981) even found evidence of overcapitalization.⁶ Only a few studies, notably, Pollakowsky (1973), Wales and Wiens (1974), Follain and Malpezzi (1981) or McMillan and Carlson (1977) did not find any evidence of capitalization. The last study is particularly noteworthy because it estimated capitalization effects in small towns in rural Wisconsin. One proposition – further explored in Section 3.2 – is that the nocapitalization finding may be due to fairly elastic long-run housing supply in rural places.

Over the last few decades various methodological advances lead to more reliable estimates of capitalization effects. One important innovation has been the introduction of the 'boundary discontinuity approach', first applied by Cushing (1984) to study the capitalization of interjurisdictional fiscal differentials into house price differentials between adjacent blocks at the border of two jurisdictions. Interestingly, Cushing's findings are quite comparable to those of earlier studies. They indicate roughly full capitalization of tax rates as well as significant capitalization of education and library services. Numerous studies followed up on Cushing's seminal work and further refined the methodology. Most studies focused on the capitalization of school quality (e.g., Black 1999; Gibbons and Machin 2003 and 2006; Davidoff and Leigh 2008; Fack and Grenet 2010; Gibbons and Machin 2008 provide a comprehensive survey). Gibbons et al. (2009) push the approach 'to the limit' by allowing for a variety of boundary effects and spatial trends, by re-weighting the data to only consider transactions that are closest to the education district boundaries, and by submitting the estimates to a number of falsification tests. They still find an economically and statistically significant impact of school quality on house prices; a one-standard deviation increase in school value-added raises house prices by around 3%. This estimated effect is roughly mid-range in magnitude compared to related studies that push the approach less to the limit.⁷

A few studies use variation induced by 'natural experiments'. For example, Kane *et al.* (2006) exploit variation in school boundaries caused by a court-imposed desegregation order. Their estimates imply that a one standard deviation increase in school quality raises house prices by 10%. In a similar vein, Reback (2005) examines a policy change, the adoption of an interdistrict school choice program, to identify the capitalization effects associated with the diminished relevance of school district boundaries. His results suggest that a one standard-deviation increase in school quality increases prices by between 3.8 and 7.7%. Bogart and Cromwell (2000) exploit school-redistricting and employ a difference-in-difference estimator. They find that disruption of neighborhood schools (as a result of redistricting) reduces house values by roughly 10%.

Various other studies use alternative methodological approaches to examine whether local taxes or public services are capitalized into house prices. They too, by and large, reach the conclusion that fiscal variables impact house prices. For example, Brasington and Haurin (2006) employ spatial statistical tools to identify the effect of school quality on house prices.

⁶ Under the assumption of a discount rate of 5% and a time horizon of 40 years the implied rates of capitalization of the local property tax are as follows: Oates (1969): 67%; Oates (1973): 93%; King (1977): 67%; Man and Bell (1996): 90%; Reinhard (1981): 145%. Stull and Stull (1991) assumed a discount rate of 10% and an infinite time horizon to compute a capitalization rate of the property tax of 75%. Numerous studied explored capitalization rates of other types of taxes. Man and Bell (1996) concluded that the extent of capitalization of the sales tax was relatively low with 18%. The findings of Stull and Stull (1991) imply a rate of capitalization of the US income tax, from the viewpoint of a median income household, of 75%.

⁷ One standard deviation increases in measures of school quality have the following effects on house prices in related studies: Black (1999): 2.5%; Fack and Grenet (2010): 2%; Davidoff and Leigh (2008): 3.5%; Gibbons and Machin (2003 and 2006): 3-10%, 4%. See also Davidoff and Leigh (2008, Table 1) for a more extensive comparison and discussion of these studies.

Their findings suggest that a one standard-deviation increase in school quality raises house prices by 7.6%. Clapp *et al.* (2008) use a panel data spanning eleven year to explore the effect of long-run changes in school quality and property taxes (and share Hispanics) on house prices. They control for town and Census tract fixed effects to account for neighborhood unobservables. One important finding is that their estimates of property tax capitalization increase significantly when the analysis considers long-run changes. Palmon and Smith (1998a) focus on the empirical problem of spurious correlation between public services and taxes. Using unique data that varies in taxes but not in public services and thereby avoids the spurious correlation problem, they obtain a considerably higher degree of tax capitalization than most previous studies that are hampered by spurious correlation. Their findings suggest full capitalization. In another study, Palmon and Smith (1998b) addressed another empirical problem – the underidentification problem – that hampered previous empirical capitalization studies. They addressed the problem using estimates of rental values instead of the net user cost. Again, their findings imply capitalization rates indistinguishable from full capitalization.

While identifying causal effects of fiscal variables on house prices has also been the focus of earlier studies that employed a two-stage-least-squares (TSLS) technique, there have been advances in finding more plausibly exogenous instruments that arguably do not directly impact house prices (i.e., valid 'excluded instruments' from a theoretical point of view) and are not weakly correlated with the endogenous fiscal variables. For example, Rosenthal (2003) utilizes the random assignment of school inspections in England as an exogenous source of variation. She finds a price elasticity of school exam performance of 5%. A number of studies focus on the question whether it is school inputs (expenditures) or school outputs (typically proxied by test scores) that are capitalized into house prices. For example, Downes and Zabel (2002) combine panel data techniques with the instrumental variable (IV) approach to identify the causal effect of reading test scores on house prices. Their estimates suggest that school outputs rather than inputs are capitalized. On the other hand, for example, Bradbury et al. (2001) or Hilber and Mayer (2009), using Massachusetts' Proposition 2½ – a property tax limit – as an exogenous source of variation to identify changes in school spending and controlling for school test scores, find that communities that were constrained by the property tax limit realized gains in property values to the degree that they were able to increase school spending despite the limitation, suggesting that at least in these constrained locations the marginal homebuyer valued additional spending on schools.

A related question is whether the effect of school quality on house prices is linear, as is assumed in most capitalization studies. Cheshire and Sheppard (2004) document for Reading (UK) that better quality only commands a substantial price premium in the top third of school quality distribution. They point out that linear estimates of the effect of school quality on house prices may be highly misleading. Chiodo *et al.* (2010) explicitly test the non-linearity between school quality and house prices in a US context and confirm its importance. They find that, even after controlling for various neighborhood characteristics, the price premium from school quality remains "substantially large", particularly for neighborhoods associated with high-quality schools. They conclude that the relationship between school quality and house prices in the boundary discontinuity framework would be better characterized as a non-linear relationship.

⁸ Another contribution made by Palmon and Smith (1998a) is that they utilized an effective tax rate based on the ratio of actual taxes to market values, which are uniformly reassessed on an annual basis. This is in contrast to earlier studies that had been subject to non-uniform assessment practices.

A few studies focus on fiscal transfers across jurisdictions (both, of a horizontal and vertical nature). Barrow and Rouse (2004) estimate the effect of state education aid in the US on residential property prices within the Brueckner (1979, 1982 and 1983) framework outlined in Section 2.1. In such a restrictive setting a full capitalization finding (i.e., a \$1 increase in state education aid generates a properly discounted \$1 increase in property values) may be interpreted as evidence that school districts spend their money efficiently. Under the assumption of sensible discount rates, their results provide no evidence of massive overspending by school districts, that is, potential residents appear to value education expenditure. In a similar vein, Hilber et al. (2011) explore the impact of central government grants on local house prices in England. They use a panel data set of local authorities (LAs) and electoral targeting of grants to LAs by the incumbent national government as an exogenous source of variation in grants to identify the causal effect on house prices. Their results indicate substantial to full capitalization. They also find that house prices respond more strongly in locations in which new construction is constrained by physical barriers. The latter result suggests that long-run supply constraints may affect the extent of capitalization; a proposition that is explored in more depth in Section 3.2.

Finally, a few recent empirical studies advanced knowledge by focusing on the determinants of the extent of house price capitalization. For example, Figlio and Lucas (2004) demonstrate that the likely capitalization effect is greater the more information on school quality is available, suggesting that the degree of information-availability may affect the extent of capitalization. Hilber and Mayer (2009) establish, using a first-difference specification and an IV-approach, that municipalities in Massachusetts with less available land for new construction have a lower supply-price elasticity and a greater extent of capitalization of demand factors (including instrumented school spending). In a similar vein, Cheshire and Sheppard (2004) estimate a lower hedonic price of school quality in areas in Reading (UK) with more construction. They conclude that their finding is due to rational discounting of current school quality in areas with plenty of new housing supply as a result of greater risk that the quality may not persist in the long-run. That is, in an area with ample new construction it may be more difficult to maintain the current school quality. In addition, existing catchment areas may change and access to the best schools is therefore less certain. In locations with strict land use planning controls and, consequently, little new construction such risk may be significantly lower.⁹

Housing demand price elasticity, local supply constraints and the extent of house price capitalization

Why does it matter whether fiscal variables are capitalized?

In the strand of the literature discussed in Section 2, house price capitalization was thought to be a means of testing for efficiency in the local public sector: either in a more narrow sense –

⁹ While Cheshire and Sheppard (2004) and Hilber and Mayer (2009) provide different interpretations of their findings, it is worth noting that these are not per se inconsistent. Firstly, while in the US the regulatory restrictiveness and availability of developable land both vary enormously across and even within metro areas, this is much less the case in England, where various national planning policies are constraining supply of developable land across the country. Secondly, the geographical scale of the two study areas is quite different. While the Reading area has a surface area of 55 square km² and a population of roughly 230 thousand residents, the Commonwealth of Massachusetts has an area that is almost 500 times as large (27,366 km²) and a population that is still roughly 30 times as large (6.55 Million). It seems reasonable to assume that Reading is 'one housing market' with nearly perfectly elastic demand between neighborhoods. Arguably the same is not true for different municipalities in Massachusetts (see Section 3.2 for a discussion of this claim).

testing the Tiebout hypothesis – or in a broader sense – testing whether municipalities provide an optimal level of local public goods. The central point made in this paper instead is that *the extent of house price capitalization itself* may have important economic implications. Specifically, house price capitalization *may provide incentives to invest* in the provision of local public goods, club goods or even private goods with positive externalities. Capitalization, or the lack thereof, may also have *important unintended redistributive consequences* and *other unintended effects:* they may offset the positive incentive effects of certain policy measures.

Furthermore, the possibility that the extent of capitalization systematically varies across locations has important implications for various strands of the economic literature. Research in many areas makes the implicit assumption of uniform capitalization (i.e., local property values fully reflect the present discounted value of future benefits and costs). Such research includes urban quality-of-life comparisons (e.g., Blomquist et al. 1988; Gyourko and Tracy 1991; Gyourko *et al.* 1999), capitalization studies of environmental amenities (e.g., Smith and Huang 1995; Bui and Mayer 2003), capitalization studies of school quality and school spending (see the literature discussed in Section 2)¹⁰, capitalization studies of government subsidies or state aid (e.g., Barrow and Rouse 2004; Hilber *et al.* 2011), and capitalization studies of taxes and tax subsidies (for tax capitalization studies see Section 2; for the capitalization of tax subsidies see Capozza *et al.* 1996).

The approach taken in these studies depends on demand factors alone and assumes either that demand for housing is perfectly elastic everywhere, so that the elasticity of the long-run housing supply curve is irrelevant (shifts in demand are fully capitalized everywhere) or that local demand curves are downward sloping but that the supply of undeveloped land is inelastic and similar across locations. To the extent that capitalization varies across jurisdictions, for example, due to differences in geography/lack of developable land or land-use regulation (see e.g., Mayer and Somerville 2000; Hwang and Quigley 2004; Hilber and Mayer 2009; Hilber and Vermeulen 2010; Saiz 2010), the conclusions of all these studies may be inaccurate. This is because house price capitalization estimates cannot be easily interpreted as a household's willingness to pay for amenities or fiscal variables when the long-run supply of land for new development is fairly elastic. This is often true in the US outside of coastal areas as well as in parts of Continental Europe and in the less urbanized areas of most developing countries.¹¹

Theoretical considerations: Do local supply constraints matter?

Empirically, in order to identify the effects of house price capitalization on the provision of public goods, club goods and private goods, a measure is required that allows researchers to distinguish between locations with a small and large extent of house price capitalization. Only a few studies have considered the possibility of variation in the supply elasticity among different locations (e.g., Malpezzi 1996; Harter-Dreiman 2004; Green *et al.* 2005) or the effect of differential land supply elasticity on the extent of capitalization (e.g., Bruce and Holtz-Eakin 1999; Brasington 2002; Hilber and Mayer 2009).

¹⁰ Studies that use a boundary discontinuity approach, such as Black (1999), only look at houses very close to attendance district boundaries where land supply might indeed be equally and completely inelastic. Cross sectional studies, however, normally present estimates based on much less disaggregated data and do not take into account differences in the land supply elasticity. The estimated coefficients in these studies may be biased.

9

¹¹ The long-run supply may be particularly elastic in Africa and parts of Asia where few cities have effective controls on land availability. The important exceptions in Asia are India (see Bertaud and Brueckner 2005) and China, where supply of land is quite strongly regulated and constrained (see Cheshire 2007).

Below I discuss the proposition, and survey supporting evidence, that local long-run supply constraints – physical or regulatory constraints – affect the extent of house price capitalization and may therefore provide a neat way to identify the impact of capitalization.

In a world where households are homogenous and can relocate without any moving costs and locations are perfectly substitutable, the local demand for housing will be perfectly elastic. In such a setting a given exogenous demand shock should always be fully capitalized into house prices independent of the long-run supply price elasticity (at least as long as the supply curve is not perfectly elastic). Two important spatial equilibrium models – the Rosen-Roback model (Rosen 1974; Roback 1982) and the open monocentric city model (see e.g., Brueckner 1987) - implicitly assume such perfectly elastic local housing demand. The crucial assumptions are that households all have the same preferences and can relocate without costs. If these two assumptions hold, even if places differ in their local attributes, local supply constraints on housing in a particular location that offers a particular amenity (e.g., access to a lake) do not only raise prices locally but in all locations that offer the scarce amenity (i.e., all locations that offer access to lakes). Local supply constraints should not matter at the local level; they should only matter in aggregate as they restrict the supply of a scarce amenity so raise the price of that amenity everywhere. This is because demand for housing in all locations that offer the scarce amenity 'access to lake' is perfectly elastic and therefore the price of the amenity must be same everywhere.

In reality places differ in their provision of local public services, in their local taxes and their amenities. Some of these local attributes are rather unique (e.g., a view on the Golden Gate Bridge) or are at least in short supply (e.g., high quality local public schools). Moreover, households have heterogeneous tastes, that is, they vary in their appreciation for differences in local attributes. Households with a strong preference for a certain local attribute (subject to income) are willing to pay more for that attribute than other households. This induces sorting of households with different preferences into different places so the preferences of the marginal homebuyer and his or her willingness-to-pay for certain amenities may differ across space. In such a world with heterogeneous tastes, the local housing demand curve becomes downward sloping. With each additional household entering a community, all else equal, the marginal homebuyer has an ever lower willingness to pay for living in the place. By implication, house prices cease to reflect the willingness to pay for local public services and amenities of inframarginal households. ¹³

Households – especially homeowners but also renters in public housing – also face very substantial relocation costs. This is another mechanism that can induce the local demand curve to become downward sloping (at least in the short- and medium-run). It is quite intuitive that with heterogeneity in relocation costs, the housing demand curve becomes downward sloping – even if all households have the same tastes. Krupka and Donaldson (2008) provide a formal treatment of this argument by altering the Rosen-Roback framework

¹² See Bayer *et al.* (2007) who demonstrate that there is considerable heterogeneity in preferences for schools and neighbors, with households preferring to self-segregate on the basis of race and education.

¹³ See for example Arnott and Stiglitz (1979) for an early discussion of this argument. For a more recent discussion and formal treatment of taste heterogeneity (and imperfect mobility) see Albouy (2011, section 5). Theoretical models with imperfect substitutability between locations generally assume heterogeneity in tastes for locations. See e.g. Gyourko *et al.* (2006), Aura and Davidoff (2008) or Hilber and Robert-Nicoud (2010). In such models, supply constraints may raise prices because they constrain the number of households, so that the marginal household has a higher willingness to pay for residing in the place. (In a world with perfectly mobile and homogeneous households, demand is perfectly price elastic and all households have the same willingness to pay independent of the supply price elasticity.)

to allow for moving costs which vary among a city's residents and businesses. In such a setting regional differences in rents and wages can no longer be interpreted as compensating. While in a world with heterogeneous housing costs amenities are still important for housing rents, the local housing supply becomes the main other factor determining regional rents.

A special form of relocation costs or taste heterogeneity is 'attachment to one's home': Households may differ in their willingness-to-pay for access to certain locations because of an attachment to their place of birth (see e.g. Mansoorian and Myers 1993; Krupka 2009). That is, households may have similar preferences for certain locations once they leave their home town (they have the same utility in the rest of the economy), however, their willingness-to-pay for living in their own home town will always be greater (households derive idiosyncratic benefits from certain locations). Gibbons *et al.* (2011) note in this context "...when people have different preferences over locations, even when they offer the same amenities, ...[s]upply constraints in one location can make an amenity there look more expensive, because those with the strongest preferences for that location want to live in that location, and are prepared to pay more for any amenity in that location than other people. ..." and "...the implication is that the price differentials between areas measure the value of these areas to the marginal household, which is not necessarily the average household in terms of preferences.

To what extent *local* supply constraints matter is – in the end – an empirical question. It will depend on (i) the degree of substitutability of locations (how heterogeneous locations and preferences are), (ii) relocation costs (the share of the population that moves between labor markets in each period) and, as a special case; (iii) idiosyncratic benefits that some households derive from certain locations (e.g., their place of birth).

Glaeser and Ward (2009) argued that housing demand may be pretty elastic across municipalities within a metro area and hence local supply constraints may not matter much at the very local level. They state that "[t]he same abundance of similar, small jurisdictions that makes Greater Boston a natural place to examine the impact of land use controls on new construction makes the area a much less natural place to examine the impact of land use controls on price. There are so many close substitutes for most towns that we would not expect restricting of housing supply in one town to raise prices in that town relative to another town with similar demographics and density levels. Restrictions on building in one suburban community should not raise prices in that community relative to another town with equivalent amenities, any more than restrictions on the production of Saudi Arabian crude will raise the price of Saudi Arabian crude relative to Venezuelan crude. Of course, Saudi Arabia's quantity restrictions will still raise the global price of oil, but this cannot be seen by comparisons of prices across oil producers."

The analogy of oil and land is not unproblematic, however. Whereas Saudi Arabian and Venezuelan crude may indeed be perfect substitutes, the same is typically not the case for two parcels of land; even if these are located in neighboring municipalities. To begin with, not all metro areas are as homogenous as the Greater Boston area. Moreover, even in the Greater Boston area, say downtown Boston or Cambridge are poor substitutes for the less urbanized towns surrounding Boston. Hence, whilst land parcels in two neighboring towns in the outer ring of Greater Boston may indeed be close substitutes, this is not true for all places in Greater Boston. In fact Hilber and Mayer (2009) provide evidence that comparably less physically developed locations in Massachusetts have more elastic supply of housing and a smaller extent of house price capitalization, compared to the more developed locations. Their results hold even if they confine their sample to the Greater Boston area only (although the effects

are slightly less pronounced). In a similar vein, Hilber and Vermeulen (2010) provide evidence for England that house prices react much more strongly to earnings shocks in more regulatory and physically constrained local authorities. Whilst, on average, English local authorities – with an average of around 144,000 residents – are significantly larger than American municipalities, they are significantly smaller than the larger U.S. metro areas.

Physical versus regulatory supply constraints: Theory and evidence

In a world with heterogeneous and imperfectly mobile households (i.e., downward sloping demand curves at the 'local' level), long-run supply constraints ought to affect the supply price elasticity and, consequently, the 'extent' of capitalization of fiscal variables. This section explores the degree to which the extent of house price capitalization can be expected to vary across locations due to differences in *geographical/physical constraints* and/or due to differences in *regulatory constraints*.

A number of empirical studies suggest that *geographical/physical supply constraints* may affect the supply price elasticity and that therefore demand shocks should have a stronger impact on house prices in more constrained places. To begin with, McDonald and McMillen (2000) show for Suburban Chicago that residential development is greater in areas with a large share of agricultural land. Brasington (2002) documents, by splitting a sample into houses on the interior and the edge of the urban area, that capitalization is weaker towards the edge where housing supply-price elasticities and developer activity are greater. Finally, Hilber and Mayer (2009) use satellite land cover data to compute for each municipality in Massachusetts and for each school district in the contiguous United States the *share of already developed residential land to total developable land*. Their findings strongly support the proposition that more physically constrained places have less elastic housing supply and a greater extent of house price capitalization of demand factors.

A number of theoretical explanations exist that can rationalize these findings. To begin with, at the extreme, when a highly desirable place is *fully built-up*, it is quite intuitive why the supply of developable land is almost perfectly inelastic: existing physical structures, which are typically well-maintained in desirable places, can be demolished and reconstructed at higher density but such redevelopment is extremely costly.

Most places have at least some developable land. So the perhaps more relevant question is: Why should *more developed* locations have more inelastic supply and a greater extent of capitalization? The first argument is a purely mechanical one; mathematically, as long as the supply curve has a positive price intercept, even a linear curve generates a positive relationship between scarcity of developable land and the price *inelasticity* of supply.¹⁵

A second argument is founded in the 'endogenous zoning' literature that considers land use restrictions as political outcomes determined by voting and lobbying. Hilber and Robert-Nicoud (2010) argue that owners of developed land – homeowners and landlords – have an incentive to limit new housing supply to protect the value of their assets, whereas owners of undeveloped land have an interest in flexible zoning (to keep development costs low). Both

12

¹⁴ Hilber and Mayer (2009) consider land to be non-developable if it is classified as open water, perennial ice, barren, or wetland. Their main definition of 'non-developable' land also includes industrial land but their results are essentially unchanged if they drop industrial land from the list of non-developable uses.

¹⁵ The assumption of a positive price intercept is not restrictive. It merely implies that the present value of future land rents from farming is greater than zero. In locations where land is 'developable' (i.e., the land is not wetland or desert land) this is almost certainly the case.

groups can potentially influence the political process through voting and lobbying. Hence, to the extent that the tightness of land use regulation is indeed the outcome of a political process, new housing supply ought to be more price-inelastic in more developed locations where owners of developed land are more numerous and, hence, arguably politically more influential ('influential landowner hypothesis' ¹⁶). This reasoning also provides an explanation for why highly desirable areas (such as San Francisco or New York City) tend to be more tightly regulated: Desirable locations are more developed and, consequently, more regulated. This explanation reinforces the argument made for *fully built-up* places: To the extent that these places are also the most regulatory constrained, regulatory costs add to the already excessive demolition and reconstruction costs when redeveloping existing sites in those places. ¹⁷

The last related argument can be derived from the real options literature, which assumes that land redevelopment is costly and developable open land therefore has an option value (see e.g., Titman 1985; Capozza and Helsley 1990; Capozza and Li 1994; Novy-Marx 2007). In such a setting, when a place becomes increasingly built-up, the incremental opportunity cost of adding an extra housing unit – the real option – increases, at some point, likely exponentially, implying inelastic supply of new housing.

Saiz (2010) provides further evidence that geographical constraints affect the price elasticity of housing supply. His focus is on topography and the presence of water bodies (including ocean and pacific). Saiz measures the amount of developable land based on the presence of water bodies and high elevation, demonstrating that most metropolitan areas that are widely regarded as supply-inelastic are severely land-constrained by topography and water. Saiz documents that topographical constraints (measured as the share of land in a metro area with slopes above 15 percent) correlate positively and strongly with regulatory barriers to development and that both types of constraints negatively affect the elasticity of housing supply.¹⁸

A number of recent studies, conducted in the US, document that tight land use regulation reduces the housing supply price elasticity (e.g., Mayer and Somerville 2000; Green *et al.* 2005; Quigley and Raphael 2005; Saiz 2010) whilst raising price levels (e.g., Glaeser and Gyourko 2003; Glaeser *et al.* 2005a and b; Quigley and Raphael 2005). For example, Mayer

-

¹⁶ The 'influential landowner hypothesis' encompasses the voting mechanism (i.e., the 'homevoter hypothesis') but also emphasizes the possibility that political outcomes are determined by lobbying. That is, owners of undeveloped land and absentee landlords may be able to influence the political process and the decision of planning boards even though they may not be able to directly elect the members of the (local) planning boards. The fact that the most regulatory constrained metro areas (New York City, San Francisco, Los Angeles) have (among the) lowest homeownership rates in the country is at least indicative that 'homevoting' alone may not explain across metro area differences in regulatory restrictiveness. Numerous studies provide empirical support for this theoretical argument. Hilber and Robert-Nicoud (2010) provide extensive evidence at US metro area level that suggests that the degree of physical development (local land scarcity) in a metro area may have a causal positive effect on the overall regulatory restrictiveness of that metro area. Various other studies provide additional support. For example, Rudel (1989) demonstrates that municipalities in Connecticut adopted land use laws later if they were at a greater distance to New York City and had a greater share of farmland. Increases in restrictiveness occurred in those places that experienced the largest declines in farming during the 1960s. Fischel (2004) documents that land use regulations typically originated in the centers of large cities and then spread to the surrounding suburbs and towns. Lastly, Glaeser et al. (2005a) find a very high "regulatory tax" for Manhattan condominiums and much lower values for the entire metro area.

¹⁷ In the US typically subdivision of existing developed parcels requires a zoning ordinance waiver. This is not the case however, for example, in the UK.

¹⁸ Saiz (2010) documents that regulatory constraints are endogenous to house prices. He argues that places with severe geographical constraints have higher house prices. These higher prices in turn spur homeowners to vote for tighter regulation (homevoter hypothesis).

and Somerville (2000) find that metropolitan areas with more extensive regulation can have up to 45 percent fewer starts and price elasticities that are more than 20 percent lower than those in less regulated markets. Glaeser *et al.* (2005 a and b) conjecture that tight land use controls may be largely to blame for the exorbitant rise in housing prices in the US during the late 1990s and early 2000s.

Two recent studies – briefly discussed above – suggest that the two types of supply constraints are interlinked. Whilst Saiz (2010) suggests that the undevelopable area in an MSA is strongly positively associated with regulatory constraints, Hilber and Robert-Nicoud (2010) provide evidence indicative of a causal effect running from share developed developable land to regulatory restrictiveness (see above for the theoretical reasoning).

Hilber and Vermeulen (2010) exploit a unique panel dataset of English local authorities and use an IV-approach to identify the independent causal effects of three different types of local supply constraints (all measured at the local authority-level): (i) regulatory constraints (proxied by residential refusal rates), (ii) scarcity of developable land (proxied by the share of already developed land relative to all developable land, based on geo-coded satellite land cover data) and (iii) topography-induced constraints (proxied by elevation ranges and measures of ruggedness). Their identification strategy exploits exogenous variation from a policy reform, vote shares and historical density to identify the two endogenous local constraints-measures: regulatory constraints and scarcity of developable land (topography is arguably exogenous). They then interact all three measures of supply constraints with annual earnings data (the demand measure) and include the annual earnings figures as a separate control. This approach allows them to assess to what extent the three supply constraints amplify the impact of earnings on house prices. Hilber and Vermeulen's main findings are that regulatory constraints have a very substantive positive long-run impact on the house price-earnings elasticity. The effect of constraints due to scarcity of developable land is large but confined to highly urbanized areas. Uneven topography has a quantitatively less meaningful impact. Finally, they find that the effects of supply constraints are greater during boom than during bust periods. Overall, Hilber and Vermeulen's findings for England are consistent with the implication that both types of constraints – regulatory and geographical/physical constraints – reduce the long-term responsiveness of new construction to prices. Put differently: the extent of house price capitalization is greater in places that are constrained by regulatory restrictions and/or by physical barriers to residential development.

Capitalization and incentives to invest: A first step towards a 'taxonomy'

In this section I explore how house price capitalization induced incentives in supply constrained locations may provide a mechanism – besides other factors such as altruism or reciprocal behavior – to induce homeowners and, in particular, mobile homeowners to invest in local public goods, club goods or even private goods with positive externalities (e.g., exterior home improvements). The broader aim is to develop a 'taxonomy' of how house price capitalization and homeownership may affect the provision of these different types of goods. I also review the scant empirical evidence that investigates the theoretical propositions. As I will outline below, the underlying mechanisms differ for different types of goods (local public goods versus club goods) and institutional settings. For example, while theory predicts that residents with a relatively short expected duration in their property may be more inclined to vote in favor of the provision of durable local public goods, mobile homeowners may be less inclined to privately invest in local social capital. The scarce empirical evidence, testing this and other propositions derived from theory, is also briefly reviewed below. Overall, this

evidence is suggestive that house price capitalization indeed provides an important mechanism to induce investment in local public goods and club goods, however, these effects are largely confined to supply constrained locations.

Local public goods: The case of local public schools

A few theoretical studies have pointed out that the presence of house value capitalization may induce homeowners to take into account preferences of eventual buyers of their house when voting on durable local public goods (e.g., Wildasin 1979; Sonstelie and Portney 1980; Brueckner and Joo 1991). The theoretical models of Wildasin (1979) and Sonstelie and Portney (1980) both illustrate that, all else equal, (mobile) voters prefer public good levels that maximize their house values. If the public good level is sub-optimal from the viewpoint of local residents they have the option to sell their house and move to another local jurisdiction, in which the fiscal package better matches their preferences. Brueckner and Joo (1991) consider the decision of imperfectly mobile voters in the presence of house price capitalization. Their model demonstrates that the voter's ideal public spending level reflects a blend of his or her own preferences for local public goods and those of the eventual homebuyer. In a world with imperfect mobility, the voter no longer solely seeks to maximize the value of his/her house, although house value maximization considerations become more important, the shorter the expected duration in the local jurisdiction. Their model also suggests that liquidity constrained households are more likely to behave like property value maximizers than unconstrained households. In this context, Fischel (2001) described homeowners as "homevoters" whose voting and local political activities are guided by their concerns about home values.

A few empirical papers provide support for this view. To begin with, Brunner et al. (2001) examine voter behavior in a California school voucher initiative. Their finding of a negative correlation between the premium paid for housing and support for the school choice initiative suggests that homevoters who feared that their property values may be adversely affected, voted against the proposal. In a follow up study, Brunner and Sonstelie (2003), using a survey of potential voters on California's school voucher initiative, provide evidence consistent with the view that homeowners vote to protect their property values: homeowners without school children were significantly more likely to vote for the voucher if they lived in neighborhoods with inferior schools (where vouchers are expected to increase property values) than if they lived in neighborhoods with superior schools (where vouchers likely decrease property values). Dehring et al. (2008) propose that homeowners vote in favor of public projects they perceive increase house values and against those that do not. Using information from prereferendum events and the referendum itself on a proposed publicly subsidized NFL stadium in Arlington, TX, they provide support for the homevoter hypothesis in the sense that local residents voted in favor of the stadium if the project was likely to increase their house values. In a similar vein, Ahlfeldt (2011) examines support for a major urban development project in Berlin, albeit, in an environment of very low owner-occupancy, that is, in an area where the median voter is a renter. Consistent with the findings of the previous studies, Ahlfeldt's findings suggest that (renter-)residents oppose public projects they associate to increases in the local cost of living.

Hilber and Mayer (2009) developed a simple formal framework to examine the impact of house price capitalization on the decision of local voters whether to support a durable increase in local public school spending. The investment entails a commitment to increase school spending, financed via local taxes, over a number of periods. Hence, the benefit in form of

better school quality and the tax cost accrue in the future, as well as in the present period. In this setting, whether the investment occurs depends on the payoff of the median voter.

Consider the (plausible) case where (a) the investment generates a positive net benefit for households with children in each period, (b) the marginal homebuyer has children and (c) some portion of the net benefit is capitalized into house prices (positive extent of capitalization). In this setting, all else equal, homeowners will always be more likely than renters to vote in favor of the investment. Moreover, existing homeowners without children (including the elderly) support the investment, as long as their expected duration in the property is short enough. The model further predicts that these households should be sensitive to the extent of capitalization. The simple framework – which is outlined in more detail in Hilber and Mayer (2009) – makes four empirically testable predictions for the provision of local public goods in a system where local residents vote on local public good provision (either directly or indirectly). In general terms, the predictions can be summarized as follows:

Prediction 1: An investment in a durable local public good (that has a positive net benefit from the perspective of the marginal homebuyer) will be greater/more likely in more supply constrained locations, where the expected 'extent of capitalization' of given demand shifts is greater.¹⁹

Prediction 2: The positive link between the 'rigidity of supply constraints' and investments in durable local public goods should only exist in locations where the median resident is a homeowner.

Prediction 3: The interaction between measures of the 'rigidity of supply constraints' and a 'high share of households with a relatively short expected duration in their property' should be positive. (Applied to the case of local public schools in the US institutional setting; the elderly, who have a comparably shorter expected time horizon in their property, can be expected to be more willing to support school spending in districts where the extent of capitalization is high.)

Prediction 4: The positive relationship between 'share of households with a short expected duration' and 'rigidity of supply constraints' should be strongest for the group of residents with the shortest expected duration.

In their empirical work Hilber and Mayer (2009) identify a proxy for the extent of house price capitalization – the supply of land available for new development – and show that towns in Massachusetts with little undeveloped land have larger changes in house prices in response to a plausibly exogenous spending shock. Towns with little available land also spend more on schools. They then extend these results using data from school districts in 46 states, showing that per pupil spending is positively related to the percentage of developed land (Prediction

16

¹⁹ Hilber and Mayer's (2009) interpretation of this prediction is that local supply constraints determine the extent of capitalization of demand factors: If the local demand curve is downward sloping – as discussed in Section 3.2 – the rigidity of local supply constraints should determine the extent of capitalization. It is worth noting, however, that another mechanism may bring about the same empirical finding: In school districts with elastic supply, investment in a local public school may attract many new families with school-aged children. These additional children use up resources. The newcomer-school children may also be difficult and costly to integrate. This in turn may 'dilute' the investment-induced improved school quality. That is, the school quality is lower – and, consequently, house prices increase less – than in the absence of newcomers. Hence, even if the observed (diminished) school quality were fully capitalized, local supply constraints would still matter for 'incentives to invest'. The idea of a 'dilution effect' is discussed in the next sub-section in the context of individual social capital investment. For a more in-depth discussion see Hilber (2010).

1). This positive correlation persists only in districts where the median resident is a homeowner (Prediction 2) and is stronger in districts with more elderly residents who do not use school services and have a shorter expected duration in their home (Prediction 3). Finally, they find that these positive interaction effects are strongest for the group of older elderly with the shortest expected duration in their property (Prediction 4). Hence, their empirical findings support theoretical models in which capitalization encourages the provision of durable local public goods (and also provide an explanation for why some elderly support local school spending).

Club goods: The case of local social capital²⁰

A number of empirical studies document a positive link between homeownership and individual investment in social capital and civic efforts (e.g., Rossi and Weber 1996; Hoff and Sen 2005). DiPasquale and Glaeser (1999) provide evidence that is suggestive of a causal effect from the former onto the latter. Capitalization of community quality into house prices may be a plausible mechanism explaining the link. In fact, Glaeser and DiPasquale (1999) argue that homeowners are "better citizens" because homeownership creates barriers to mobility and gives individuals an incentive to invest in local amenities and social capital *since community quality is capitalized into property values*. However alternative mechanisms such as reciprocal behavior²¹ could potentially also explain a positive link between homeownership and social capital (see Hilber 2010 for a discussion of alternative explanations).

It is tempting to conclude that the predictions outlined above for the case of public investment in local public schools (or other durable local public goods) should equally apply to the case of private investment in social capital/social capital induced neighborhood clubs (such as neighborhood watch groups). Yet, investment in local public schools differs crucially from that in neighborhood specific social capital. In the former setting the public vote is binding for all residents and direct benefits accrue only to a minority of residents (households with children). Yet, all residents bear the direct tax costs. In the latter setting each resident makes an individual investment decision that only has private cost implications. As long as investors can largely exclude those who do not invest from access to social capital induced benefits, there will be a link between investment and direct benefits. Nevertheless, homeowners can in principle free ride on other neighbors' investments by not investing and selling their property. (In the case of local public schools, either nobody or all residents invest.) This implies that in the case of neighborhood specific social capital, nobody may initially have an incentive to invest, unless some "mechanism" prevents free riding. This mechanism may be the existence of housing transaction costs: selling a property only to free ride on other neighbors' investments is not an attractive option if the transaction costs exceed the benefits derived from social capital. Transaction costs of selling a house – even when excluding any other relocation costs – are typically quite high. For example, Haurin and Gill (2002) estimate these transaction costs in the U.S. as the sum of 3% of the house value and 4% of total household earning.

In a world with high transaction costs the question then becomes whether the homeowner's long-term benefits derived from social capital exceed the costs. The answer to this question crucially depends on the elasticity of new local housing supply. Consider a neighborhood where renters can relocate freely but transaction costs make existing homeowners immobile. In such a setting homeowners have greater incentives to invest in social capital compared to

²⁰ This Section draws heavily on Hilber (2010).

²¹ For an exposition of the mechanism of reciprocal behaviour see for example Helsley and Strange (2004).

renters as long as the long-term net benefits exceed the initial investment costs *and* investors can, for the most part, exclude non-investors from access to social capital induced club goods. This is because homeowners can internalize the long-term net benefits from their investments, while renters are at least partially deprived of those net benefits (landlords can pocket proceeds by increasing rents).

In this setting, the elasticity of new housing supply is critical for social capital investment because, all else equal, it affects the inflow of newcomers and thereby determines the homeowners' long-term net benefits from social capital. In a built-up neighborhood with inelastic supply of developable land, initial investors in social capital are largely protected from inflows of newcomers that could *dilute* the long-run net benefit from that social capital. Dilution may occur either as a consequence of an increase in social capital maintenance costs or due to congestion effects on the consumption side.

In contrast, in a little developed neighborhood with elastic supply, newly accumulated social capital will steer landowners to develop new housing units as long as the price exceeds the marginal (opportunity) cost of conversion. In the long-run, the net benefit from social capital is diluted to an extent that the marginal newcomer's net benefit and the corresponding house price premium become very small. It is quite intuitive that in such a setting nobody has an incentive to make an investment in neighborhood specific social capital in the first place. The above theoretical considerations imply two general, empirically testable, predictions:

Prediction 5: The positive link between individual homeownership and individual investment in local club goods (e.g., neighborhood specific social capital investment) should be stronger, all else equal, in more supply constrained locations.

Prediction 6: Newcomers should socially interact with other neighbors after a brief period (to get access to the club goods) and there should not be much increase in the intensity as the duration in the neighborhood increases.

The *expected* duration in the property should have a positive effect on individual investment in neighborhood specific social capital, unlike in the case of a durable increase in local public school spending. This is because the accumulated benefits derived from social capital increase with the expected length of stay, while the large initial burden (in the form of efforts needed to generate trust and friendship among involved club members) accrues even if the residents only have a short duration. Moreover, the benefits associated with the sale of a property at the time of exit accrue independent of whether or not a homeowner bears the investment costs. Hence, a longer expected duration should increase the likelihood that the investment has a positive payoff. The following should hold:

Prediction 7: Individual investment in local club goods (such as neighborhood-specific social capital) should be positively related to the expected time until the next move.

Moreover, unlike in the case of local public schools, homeowners with a short expected duration in the property should not react sensitively to the extent of capitalization. They will always be better off not investing, independent of the extent of capitalization.

Hilber (2010) uses an IV-approach and data from the Social Capital Community Benchmark Survey to document that the positive link between homeownership and individual social capital investment is indeed largely confined to more built-up neighborhoods with more inelastic supply of new housing (Prediction 5). The empirical findings provide support for the proposition that in these localities supply constraints, which ensure that initial social capital

investments increase house values, provide additional incentives for homeowners to invest in social capital. Hilber (2010) also provides evidence supporting Predictions 6 and 7.

Unintended redistribution and other unintended effects of capitalization

Redistributive effects: Theoretical considerations and empirical evidence

The proposition that government policies are capitalized into land values and thereby can have unintended redistributive consequences goes back all the way to David Ricardo (1817) who studied the Corn Laws passed in England during the first decade of the 19th century. Ricardo argued that a tax on imported corn to raise its price and thereby protect British farmers, would have the effect of raising the rent of wheat land (and hence its value) until the benefits to the farmer renting the land are effectively wiped out. The true beneficiaries of the policy would be the landlords who own the land.

In a residential (and more modern) context, several authors have argued theoretically that location-based aid (as opposed to grants to poor individuals) can have adverse consequences, since poor residents are typically renters who will be forced to pay higher rents if the transfers are capitalized into higher house prices (e.g., Hamilton 1976b and Wyckoff 1995). Wyckoff (1995) developed a simple model with two communities and three income groups to demonstrate that in the case of an urban area in which the central city is small relative to the entire metro area, the welfare effect of intergovernmental aid (such as education aid) on poor voters should be expected to be completely offset by higher housing costs. In fact, the capitalization of any place based government policy potentially has important – often unintended – distributional consequences. Specifically, a finding of substantial or full capitalization may jeopardize any distributional objectives that governed the design of policies and government programs aimed to help disadvantaged groups.

On the empirical side, a few studies investigated econometrically whether farm subsidies are capitalized into land values. For example, Goodwin and Ortalo-Magné (1992) find a strong relationship between producer subsidy equivalents and land values in six regions in the US, Canada, and France. Clark *et al.* (1993) on the other hand, using data for the region of Saskatchewan in Canada, find only weak evidence in support of the hypothesis that short-term subsidies are capitalized into land values, possibly because farmland in Saskatchewan is supplied quite elastically.

More recently, a few studies have investigated the distributional consequences of geographically-targeted policies. Hanson (2009) explored the impact of the federal Empowerment Zone (EZ) program, a set of tax incentives targeted to areas of select cities. Hanson's most rigorous (IV) estimates suggest that the EZ program had a large effect on property values implying that geographically-targeted tax incentives may mainly benefit landowners. Hilber *et al.* (2011) explore the impact of central government grants on local house prices in England. Their findings indicate substantial to full capitalization. Furthermore they find that house prices respond somewhat more strongly in locations in which new construction is constrained by physical barriers (i.e., in rugged terrain). This suggests that increases in grants to a local authority may mainly benefit the typically better off property owners (homeowners and absentee landlords) in that local authority. Or put differently: any adjustments in the distribution of grants over local authorities would boil down to

redistribution of resources between property owners in gaining and losing local authorities without making private renters any better off.²²

Other unintended effects: Offsetting of policy induced incentives

House price capitalization of government programs and policies does not only have unintended distributional consequences but may also offset intended policy induced incentives. A prime example to illustrate these perverse effects is the home mortgage interest deduction (MID). The aim of the MID is to create incentives to become a homeowner and buy more housing. Various researchers have pointed out that the MID is a poor instrument for encouraging homeownership as it benefits mainly higher income households, who are almost always homeowners anyway (see e.g., Glaeser and Shapiro 2003). The capitalization of the MID into house prices casts an even more damning light on the MID. Hilber and Turner (2010) examine the impact of the combined U.S. state and federal mortgage interest deduction (MID) on homeownership attainment. They find that capitalization of the MID into house prices offsets the positive effect on homeownership: The MID only boosts homeownership attainment of higher income households in less tightly regulated housing markets. In more restrictive places – typically larger coastal cities – an adverse effect exists. Arguably this is because in supply constrained metro areas the MID increases housing demand and, consequently, the price of owner-occupied housing relative to the price of rental housing (the reservation price). Would-be homeowners of course also benefit from the subsidy, so, all else equal to the extent that the subsidy is fully capitalized they should be neither better nor worse off. However, the MID – via increasing the price of owner-occupied housing – also increases the costs associated with the transaction of owner-occupied housing, as the latter is roughly proportional to house values (see Haurin and Gill 2002). This matters a lot to mobile (typically younger and better educated) residents, including first time buyers. Some of these mobile households - 'the marginal owner-occupiers' - who preferred to own prior to an increase in the MID, may prefer to rent after an increase. In fact, this theoretical explanation may explain the finding by Bourassa and Min (2008) that the MID has a negative impact on homeownership attainment of the young. In a similar vein, the capitalization of the MID into higher house prices reduces the likelihood of credit constrained households to be able to qualify for a mortgage. That is, an MID induced increase in house prices will cause downpayment constraints to become binding for certain 'marginal households' with respect to the housing tenure decision, forcing previously 'marginal owner-occupiers' to rent instead.

Conclusions and Scope for Future Research

This paper has two main objectives: (i) Outline the relevant strands of the literature on house price capitalization and its economic impacts and (ii) indicate possible directions for fertile future research.²³ To advance the first objective, I have synthesized an emerging literature that explores the conditions under which public and private investments at the local and neighborhood level and intergovernmental transfers to local jurisdictions are capitalized into house prices and the broader implications of such capitalization. Theoretical considerations and recent empirical evidence suggest that house price capitalization is much more pronounced in locations with strict regulatory and geographical/physical supply constraints.

20

²² Grant increases may benefit renters in the social sector to the extent that their rents are detached from market rents.

²³ Of course this brief paper by no means provides an exhaustive summary and in depth discussion of all the strands of the economic literature. In fact, the sheer breadth of the literature makes it highly likely that some relevant studies were omitted.

The effect of local scarcity of developable land on the extent of capitalization appears to be very non-linear, being largely confined to the most built-up areas. Ruggedness or steep slopes matter too but, again, the effects on capitalization appear to be confined only to quite mountainous areas (very steep slopes; high degree of ruggedness). The impact of regulatory constraints depends on the country specific institutional settings. For example, in the US the impact of regulatory constraints on the extent of capitalization varies enormously across metro areas, with capitalization effects being mainly confined to the more desirable coastal areas. The British planning system, in contrast, imposes constraints on the supply of space across the country, implying significant capitalization even in more remote places.

Only a few empirical studies have so far tested whether varying degrees of house price capitalization generate different incentive effects. The scant empirical evidence for the US suggests that (i) such incentive effects exist and (ii) are mainly confined to more supply constrained locations. This finding has important implications for the provision of local public goods and club goods as it suggests that the 'capitalization induced' provision of durable local public goods and club goods may be greater in more supply constrained places.

The theoretical and empirical research discussed in this paper also has important consequences for redistribution and the assessment of place based policies at various levels of government (federal/central, state/regional and local). The empirical findings discussed in the paper are strongly suggestive that capitalization effects – which are habitually ignored by policy makers – have important adverse consequences for a wide range of policies such as intergovernmental aid or the mortgage interest deduction. While the direct effect of intergovernmental aid to disadvantaged places is positive (i.e., considered in isolation making local residents better off), there is also typically an ignored *hidden* effect, namely, that better local public services or lower taxes are capitalized into property prices, so, effectively, the aid may mainly benefit typically better off homeowners and (often absentee) landlords who rent out their properties to typically lower income renters. These renters benefit from better local public services. However, they often do not benefit much from lower taxes, and, most importantly, they have to pay higher rents, reflecting the increased desirability of the receiving jurisdiction, so on balance they may be no better off or even worse off than without intergovernmental aid. Of course, in locations where such aid is not capitalized, the redistribution effects are more progressive. Overall, the empirical findings imply that policies with a redistributive aim might be much more effective if they "helped people rather than places". House price capitalization of government programs and policies have a particularly damaging effect in places with inelastic supply of housing, that is, in supply constrained places (such as San Francisco or Los Angeles) as well as in locations that are confronted with tight land use planning (e.g., New York City, San Francisco or Los Angeles; large parts of the UK and in particular the South East of England). Intergovernmental aid to poor inner city places may be a particularly poor tool to help disadvantaged people as the aid – due to capitalization effects – may make the disadvantaged quite possibly worse off.

Similarly, house price capitalization effects may offset the intended incentive effects of certain policies. For example, the explicit aim of the mortgage interest deduction (MID) in most countries is to increase homeownership attainment. However, empirical findings for the US at least suggest that the MID has an overall negligible effect on homeownership attainment and has a negative effect in more supply constrained locations, where capitalization effects are greater.

The research summarized in this paper is by no means conclusive. I have emphasized the importance of regulatory and geographical/physical supply constraints in determining the 'extent of capitalization' and summarized the tentative empirical evidence. However, other factors besides supply constraints may be important too. In particular the role of household mobility, and lack thereof, could be further explored in future empirical work. Empirical evidence on the incentive effects of capitalization is still quite limited. On the theoretical side, this article only provides a very tentative first step towards a 'taxonomy' of the incentive effects of house price capitalization. The 'taxonomy' sketched in this paper is very incomplete. For example, little is known whether capitalization effects can be expected to encourage the provision of largely private goods with positive externalities (e.g., beautiful private gardens). Empirical evidence is also limited.²⁴

While some researchers have argued that house price capitalization may provide a mechanism so that present residents (or present generations) internalize the well-being of future residents (future generations) (e.g., Conley and Rangel 2001, Glaeser 1996, and Oates and Schwab 1988 and 1996); there is little direct empirical evidence to date that capitalization provides inter-temporal and/or inter-generational incentive effects. Such effects may be largely confined to the local level, so may not be very helpful to tackle important environmental problems at regional, country-wide, or global scale. More research, both on the theoretical and empirical side, may help to develop a better understanding on whether (and under what conditions) capitalization may provide an incentive mechanism in an intergenerational sense. Finally, this paper has summarized recent evidence on the redistributive and policy implications of capitalization of central government grants in England and the MID in the US. Capitalization effects are of course not confined to these two policies but are potentially present in all policies that target places. Future research could focus on these other policies. The 'house price capitalization research' certainly provides highly fertile ground for future research.

²⁴ One of the very few studies looking at private investments in the context of the topic in this paper is the work by Galster (1983) who suggested that due to moral hazard problems tenants treat their units less carefully than homeowners.

References

- Ahlfeldt, G.M., 2011. Blessing or curse? Appreciation, amenities and resistance to urban renewal, *Regional Science and Urban Economics* 41(1), 32-45.
- Albouy, D., 2011. Are Big Cities Really Bad Places to Live? Improving Quality-of-Life Estimates across Cities, NBER Working Paper, No. 14472. (Revised February 2011)
- Arnott, R. and J. Stiglitz, 1979. Aggregate land rents, expenditure on public goods, and optimal city size, *Quarterly Journal of Economics* 93, 471–500.
- Aura, S. and T. Davidoff, 2008. Supply Constraints and Housing Prices, *Economics Letters* 99(2), 275-277.
- Barrow, L. and C.E. Rouse, 2004. Using market valuation to assess public school spending, *Journal of Public Economics* 88, 1747-1769.
- Bayer, P., F. Ferreira and R. McMillan, 2007. A Unified Framework for Measuring Preferences for Schools and Neighborhoods, *Journal of Political Economy*, 115(4), 588-638.
- Bertaud, A. and J.K. Brueckner, 2005. Analyzing building-height restrictions: predicted impacts and welfare costs, *Regional Science and Urban Economics* 35(2), 109-125.
- Black, S., 1999. Do Better Schools Matter? Parental Valuation of Elementary Education, *Quarterly Journal of Economics* 114, 577-599.
- Blomquist, G., M.C. Berger and J.P. Hoehn, 1988. New estimates of quality of life in urban areas, *American Economic Review* 78, 89-107.
- Bogart, W.T. and B.A. Cromwell, 2000. How much is a neighborhood school worth?, *Journal of Urban Economics* 47, 280-305.
- Bourassa, S.C. and M. Yin, 2008. Tax Deductions, Tax Credits and the Homeownership Rate of Young Urban Adults in the United States, *Urban Studies* 45(5-6), 1141-1161.
- Bradbury, K.L., C.J. Mayer and K.E. Case, 2001. Property tax limits, local fiscal behavior, and property values: Evidence from Massachusetts under Proposition 2½, *Journal of Public Economics* 80, 287-311.
- Brasington, D. and D. Haurin, 2006. Educational Outcomes and House Values: A Test of the Value Added Approach, *Journal of Regional Science* 46, 245-268.
- Brasington, D.M. 2002. Edge versus center: finding common ground in the capitalization debate, *Journal of Urban Economics* 52(3), 524-541.
- Bruce, D. and D. Holtz-Eakin, 1999. Fundamental tax reform and residential housing, *Journal of Housing Economics* 8, 249-271.
- Brueckner, J.K. and M.-S. Joo, 1991. Voting with capitalization, *Regional Science and Urban Economics* 21(3), 453-467.
- Brueckner, J.K., 1979. Property values, local public expenditures and economic efficiency, *Journal of Public Economics* 11, 223-245.

- Brueckner, J.K., 1982. A test for allocative efficiency in the local public sector, *Journal of Public Economics* 19, 311-331.
- Brueckner, J.K., 1983. Property value maximization and public sector efficiency, *Journal of Urban Economics* 14(1), 1-15.
- Brueckner, J.K., 1987. The Structure of Urban Equilibria, *Handbook of Regional and Urban Economics*, Vol. II, 821-846.
- Brunner, E. and J. Sonstelie, 2003. Homeowners, property values, and the political economy of the school voucher, *Journal of Urban Economics* 54, 239-257.
- Brunner, E., J. Sonstelie and M. Thayer, 2003. Capitalization and the voucher: An analysis of precinct returns from California's Proposition 174, *Journal of Urban Economics* 50, 517-536.
- Bui, L. and C.J. Mayer, 2003. Regulation and capitalization of environmental amenities: Evidence from the toxics release inventory in Massachusetts, *Review of Economics and Statistic* 85, 693-708.
- Capozza, D.R. and R.W. Helsley, 1990. The stochastic city, *Journal of Urban Economics* 28(2), 187-203.
- Capozza, D.R. and Y. Li, 1994. The intensity and timing of investment: The case of land, *American Economic Review* 84(4), 889-904.
- Capozza, D.R., R.K. Green and P.H. Hendershott, 1996. Taxes, mortgage borrowing, and residential land prices, in: Aaron, H.J., Gale, W.G. (Eds.), *Economic Effects of Fundamental Tax Reform*, Brookings Institution Press, Washington, D.C., 171-210.
- Chaudry-Shah, A., 1988. Capitalization and the Theory of Local Public Finance: An Interpretive Essay, *Journal of Economic Surveys* 2, 209-243.
- Cheshire, P., 2007. Introduction of Price Signlas into Land Use Planning: Are they applicable in China, in Song, Y., Ding, C. (Eds.), *Urbanization in China: Critical Issues in an Era of Rapid Growth*, Cambridge, MA: Lincoln Institute.
- Cheshire, P. and S. Sheppard, 2004. Capitalising the value of free schools: The impact of supply characteristics and uncertainty, *Economic Journal* 114, F397-424.Chiodo, A.J., R. Hernández-Murillo and M.T. Owyang, 2010. Nonlinear effects of school quality on house prices, *Federal Reserve Bank of St. Louis Review* 92(3), 185-204.
- Clapp, J., A. Nanda and S.L. Ross, 2008. Which School Attributes Matter? The Influence of School District Performance and Demographic Composition on Property Values, *Journal* of Urban Economics 63, 451-466.
- Clark, S.J., K.K. Klein and S.J. Thompson, 1993. Are Subsidies Capitalized into Land Values? Some Time Series Evidence from Saskatchewan. *Canadian Journal of Agricultural Economics* 41, 155-168.
- Cushing, B.J., 1984. Capitalization of Interjurisdictional Fiscal Differentials: An Alternative Approach. *Journal of Urban Economics* 15, 317-326.

- Davidoff, I. and A. Leigh, 2008. How Much do Public Schools Really Cost? Estimating the Relationship between House Prices and School Quality, *Economic Record* 84(265), 193-206.
- Dehring, C.A., C.A. Depken II. and M.R. Ward, 2008. A direct test of the homevoter hypothesis, *Journal of Urban Economics* 64(1), 155-170.
- DiPasquale, D. and E.L. Glaeser, 1999. Incentives and social capital: Are homeowners better citizens?, *Journal of Urban Economics* 45(2), 354-384.
- Dowding K., P. John and S. Biggs, 1994. Tiebout: A Survey of the Empirical Literature, *Urban Studies* 31, 767-97.
- Downes, T.A. and J.E. Zabel, 2002. The impact of school characteristics on house prices: Chicago 1987-1991. *Journal of Urban Economics*, 52(1), 1-25.
- Edel, M. and E. Sclar, 1974. Taxes, spending, property values: supply adjustment in a Tiebout-Oates model, *Journal of Political Economy* 82(5), 941-954.
- Epple, D. and A. Zelenitz, 1981. The implications of competition among jurisdictions: does Tiebout need politics?, *Journal of Political Economy* 89(6), 1197-1217.
- Epple, D., A. Zelenitz and M. Visscher, 1978. A search for testable implications of the Tiebout hypothesis, *Journal of Political Economy* 86(3), 405-425.
- Fack, G. and J. Grenet, 2010. When do Better Schools Raise Housing Prices? Evidence from Paris Public and Private Schools, *Journal of Public Economics* 94(1-2), 59-77.
- Figlio, D.N. and M.E. Lucas, 2004. What's in a grade? School report cards and the housing market, *American Economic Review* 94, 591-604.
- Fischel, W.A., 2001. Homevoters, municipal corporate governance, and the benefit view of the property tax, *National Tax Journal* 54(1), 157-173.
- Fischel, W.A., 2004. An economic history of zoning and a cure for its exclusionary effects, *Urban Studies* 41(2), 317-340.
- Follain, J. Jr. and S. Malpezzi, 1981. The flight to the suburbs: Insights gained from an analysis of central city vs. suburban housing costs, *Journal of Urban Economics* 9, 381-398.
- Galster, G.C., 1983. Empirical Evidence on Cross-Tenure Differences in Home Maintenance and Conditions, *Land Economics* 59, 107-113.
- Gibbons, S. and S. Machin, 2003. Valuing English Primary Schools, *Journal of Urban Economics* 53(2), 197-219.
- Gibbons, S. and S. Machin, 2006. Paying for Primary Schools: Admissions Constraints, School Popularity or Congestion, *Economic Journal* 116, C77-C92.
- Gibbons, S. and S. Machin, 2008. Valuing School Quality, Better Transport, and Lower Crime: Evidence from House Prices, *Oxford Review of Economic Policy* 24(1), 99-119.

- Gibbons, S., S. Machin and O. Silva, 2009. Valuing School Quality Using Boundary Discontinuities, SERC Discussion Paper No. 18, March.
- Gibbons, S., H.G. Overman, and G. Resende, 2011. Real Earnings Disparities in Britain. SERC Discussion Paper No. 65, January.
- Glaeser, E.L., 1996. The incentive effects of property taxes on local governments, *Public Choice* 89(1-2), 93-111.
- Glaeser, E.L. and J. Gyourko, 2003. The Impact of Building Restrictions on Housing Affordability, Federal Reserve Bank of New York *Economic Policy Review* 9(2), 21-39.
- Glaeser, E.L., J. Gyourko and R.E. Saks, 2005a. Why is Manhattan so Expensive? Regulation and the Rise in Housing Prices, *Journal of Law and Economics* 48(2), 331-369.
- Glaeser, E.L., J. Gyourko and R.E. Saks, 2005b. Why Have Housing Prices Gone Up?, *American Economic Review* 95(2), 329-333.
- Glaeser, E.L. and J.M. Shapiro, 2003. The Benefits of the Home Mortgage Interest Deduction, NBER Chapter in: *Tax Policy and the Economy* 17, 37-82. National Bureau of Economic Research.
- Glaeser, E.L. and B.A. Ward, 2009. The causes and consequences of land use regulation: Evidence from Greater Boston, *Journal of Urban Economics* 65, 265-278.
- Goodwin, B.K. and F. Ortalo-Magné, 1992. The Capitalization of Wheat Subsidies into Agricultural Land Values. *Canadian Journal of Agricultural Economics* 40, 37-54.
- Green, R.K., S. Malpezzi and S.K. Mayo, 2005 Metropolitan-Specific Estimates of the Price Elasticity of Supply of Housing, and Their Sources, *American Economic Review* 95(2), 334-339.
- Gyourko, J., M. Kahn and J. Tracy, 1999. Quality of life and environmental comparisons, in: Cheshire, P., Mills, E.S. (Eds.), *Handbook of Regional and Urban Economics*, North-Holland, New York, pp. 1413-1454.
- Gyourko, J., C.J. Mayer and T. Sinai, 2006. Superstar Cities, NBER Working Paper, No. 12355, July.
- Gyourko, J. and J. Tracy, 1991. The structure of local public finance and the quality of life, *Journal of Political Economy* 99, 774-806.
- Hamilton, B.W., 1976a. The effects of property taxes and local public spending on property values: a theoretical comment. *Journal of Political Economy* 84(3), 647-650.
- Hamilton, B.W., 1976b. Capitalization of intrajurisdictional differences in local tax prices, *American Economic Review* 66, 743-753.
- Hanson, A., 2009. Local employment, poverty, and property value effects of geographically-targeted tax incentives: An instrumental variables approach, *Regional Science and Urban Economics* 39, 721–731.

- Harter-Dreiman, M., 2004. Drawing inferences about housing supply elasticity from house price responses to income shocks, *Journal of Urban Economics* 55,316-337.
- Haurin, D.R. and H.L. Gill, 2002. The impact of transaction costs and the expected length of stay on homeownership, *Journal of Urban Economics* 51(3), 563-584.
- Helsley, R.W. and W.C. Strange, 2004. Knowledge barter in cities, *Journal of Urban Economics* 56(2), 327-345.
- Hilber, C.A.L., 2010. New Housing Supply and the Dilution of Social Capital, *Journal of Urban Economics* 67, 419-437.
- Hilber, C.A.L., T. Lyytikäinen and W. Vermeulen, 2011. Capitalization of Central Government Grants into Local House Prices: Panel Data Evidence from England, *Regional Science and Urban Economics* 41, 394-406.
- Hilber, C.A.L. and C.J. Mayer, 2009. Why do households without children support local public schools? Linking house price capitalization to school spending, *Journal of Urban Economics* 65(1), 74-90.
- Hilber, C.A.L. and F. Robert-Nicoud, 2010. On the origins of land use regulations: Theory and evidence from US metro areas, mimeo, London School of Economics, July.
- Hilber, C.A.L. and T.M. Turner, 2010. The Mortgage Interest Deduction and its Impact on Homeownership Decisions, London School of Economics, SERC Discussion Paper No. 55, September 2010.
- Hilber, C.A.L. and W. Vermeulen, 2010. *The Impact of Restricting Housing Supply on House Prices and Affordability*. Final Report. Department for Communities and Local Government, November 2010. (www.communities.gov.uk/documents/housing/pdf/1767142.pdf)
- Hoff, K. and A. Sen, 2005. Homeownership, community interactions, and segregation, *American Economic Review* 95(4), 1167-1189.
- Hwang, M. and J. Quigley, 2006. Economic fundamentals in local housing markets: Evidence from U.S. metropolitan regions, *Journal of Regional Science* 46(3), 425-453.
- Ihlanfeldt, K. and T. Shaughnessy, 2004. An Empirical Investigation of the Effect of Impact Fees on Housing and Land Markets, *Regional Science and Urban Economics* 34, 639-661.
- Kane, T, D. Staiger and S. Riegg, 2006. School Quality, Neighborhoods and Housing Prices, *American Law and Economics Review* 8(2), 183-212.
- King, A.T., 1977. Estimating Property Tax Capitalization: A Critical Comment, *Journal of Political Economy* 85, 425-431.
- Krupka, D.J., 2009. Location-specific Human Capital, Location Choice and Amenity Demand, *Journal of Regional Science*, 49(5), 833-854.
- Krupka, D.J. and K.N. Donaldson, 2008. Wages, Rents and Heterogeneous Moving Costs, mimeo, Institute for the Study of Labor (IZA).

- Malpezzi, S., 1996. Housing prices, externalities, and regulation in U.S. metropolitan areas, *Journal of Housing Research* 7, 209-241.
- Man, J.Y. and Bell, M.E., 1996. The Impact of Local Sales Taxes on the Value of Owner-Occupied Housing, *Journal of Urban Economics* 39, 114-130.
- Mansoorian, A. and G.M. Myers, 1993. Attachment to home and efficient purchases of population in a fiscal externality economy, *Journal of Public Economics* 52, 117-132.
- Mayer, C.J. and C.T. Somerville, 2000. Land use regulation and new construction, *Regional Science and Urban Economics* 30, 639-62.
- McDonald, J.F. and D.P. McMillen, 2000. Employment subcenters and subsequent real estate development in suburban Chicago, *Journal of Urban Economics* 48(1), 135-157.
- McMillan, M.L. and R. Carlson, 1977. The Effects of Property Taxes and Local Public Services Upon Residential Property Values in Small Wisconsin Cities, *American Journal of Agricultural Economics* 59(1), 81-87.
- Musgrave, R.A., 1939. The Voluntary Exchange Theory of Public Economy, *Quarterly Journal of Economics* 53(2), 213-117.
- Novy-Marx, R., 2007. An equilibrium model of investment under uncertainty, *Review of Financial Studies* 20(5), 1461-1502.
- Oates W.E., 1969. The Effects of Property Taxes and Local Public Spending on Property Values: An Empirical Study of Tax Capitalization and the Tiebout Hypothesis, *Journal of Political Economy* 77, 957-971.
- Oates, W.E. and R. Schwab, 1988. Economic competition among jurisdictions: Efficiency enhancing or distortion inducing?, *Journal of Public Economics* 35(3), 333-354.
- Oates, W.E. and R. Schwab, 1996. The theory of regulatory federalism: The case of environmental management, in: Oates, W.E. (Ed.), *The Economics of Environmental Regulation*, Edward Elgar, Aldershot, UK, 319-331.
- Oates, W.E., 1973. The Effects of Property Taxes and Local Public Spending on Property Values: A Reply and yet Further Results, *Journal of Political Economy* 81, 1004-1008.
- Palmon, O. and B.A. Smith, 1998a. New evidence on property tax capitalization, *Journal of Political Economy* 106, 1099-1111.
- Palmon, O. and B.A. Smith, 1998b. A new approach for identifying the parameters of a tax capitalization model, *Journal of Urban Economics* 44, 299-316.
- Pollakowski, H.O., 1973. The Effects of Property Taxes and Local Public Spending on Property Values: A Comment and Further Results. *Journal of Political Economy* 81(4), 994-1003.
- Quigley, J.M. and S. Raphael, 2005. Regulation and the High Cost of Housing in California, *American Economic Review* 95(2), 323-328.
- Rangel, A., 2005. How to protect future generations using tax-base restrictions, *American Economic Review* 95(1), 314-346.

- Reback, R., 2005. House prices and the provision of local public services: Capitalization under school choice programs, *Journal of Urban Economics* 57, 275-301.
- Reinhard, R.M., 1981. Estimating Property Tax Capitalization: A Further Comment, *Journal of Political Economy* 89(6), 1251-1260.
- Ricardo, D., 1817. The Principles of Political Economy and Taxation. London: John Murray.
- Roback, J., 1982. Wages, Rents and the Quality of Life. *Journal of Political Economy*, 90, 1257-1278.
- Rosen, S.H., 1974. Hedonic Prices and Implicit Markets. *Journal of Political Economy*, 82(1), 34-55.
- Rosenthal, L., 2003. The Value of Secondary School Quality, Oxford Bulletin of Economics and Statistics 65(3), 329-355.
- Ross, S.L. and J. Yinger (1999) "Sorting and voting: A review of the literature on urban public finance, in: P. Cheshire, E.S. Mills (Eds.), *The Handbook of Urban and Regional Economics*, vol. 3, Amsterdam: North-Holland.
- Rossi, P. and E. Weber, 1996. The social benefits of homeownership: Empirical evidence from national surveys, *Housing Policy Debate* 7, 1-35.
- Rudel, T.K., 1989. *Situations and Strategies in American Land-Use Planning*, Cambridge University Press, Cambridge, England.
- Saiz, A., 2010. The geographic determinants of housing supply, *Quarterly Journal of Economics* 125(3), 1253-1296.
- Samuelson, P.A., 1954. The Pure Theory of Public Expenditure, *Review of Economics and Statistics*, 36(4), 387-389.
- Smith, V.K. and J.C. Huang, 1995. Can markets value air quality? A meta-analysis of hedonic property value models, *Journal of Political Economy* 103, 209-227.
- Sonstelie, J.C. and P.R. Portney, 1978. Profit maximizing communities and the theory of local public expenditures, *Journal of Urban Economics* 5(2), 263-277.
- Stull, W.J. and J.C. Stull, 1991. Capitalization of Local Income Taxes, *Journal of Urban Economics* 29, 182-190.
- Tiebout, C.M., 1956. A pure theory of local expenditures, *Journal of Political Economy* 64(5), 416-424.
- Titman, S., 1985. Urban land prices under uncertainty, *American Economic Review* 75(3), 505-514.
- Wales, T.J. and E.G. Wiens, 1974. Capitalization of Residential Property Taxes: An Empirical Study, *Review of Economics and Statistics* 56, 329-333.
- Weimer, D.L. and M.J. Wolkoff, 2001. School performance and housing values: Using non-contiguous district and incorporation boundaries to identify school effects, *National Tax Journal* 54, 231-253.

- Wildasin, D.E., 1979. Local public goods, property values, and local public choice, *Journal of Urban Economics* 6(4), 521-534.
- Wyckoff, P.G., 1990. Bureaucracy, inefficiency, and time, *Public Choice* 67, 169-179.
- Wyckoff, P.G., 1995. Capitalization, Equalization, and Intergovernmental Aid, *Public Finance Quarterly* 23(4), 484-508.
- Yinger, J., 1982. Capitalization and the theory of local public finance. *Journal of Political Economy* 90(5), 917-943.