Topic: Meio Ambiente

WPA 2.0

Belleza, economía, política y la creación de la nueva infraestructura pública
By Susannah Drake, Outubro 31, 2016

Este artículo ha sido adaptado de Nature and Cities: The Ecological Imperative in Urban Design and Planning (La naturaleza y las ciudades: El imperativo ecológico en el diseño y la planificación urbana), editado por Frederick R. Steiner, George F. Thompson y Armando Carbonell (Instituto Lincoln de Políticas de Suelo, noviembre de 2016).

En los últimos 400 años, el suelo conocido como los Estados Unidos de Norteamérica ha sido transformado por obras públicas y privadas e innovaciones tecnológicas masivas para facilitar el comercio, mejorar la salud pública y promover el desarrollo económico. Si bien estos proyectos generaron una riqueza tremenda para el país, estas ganancias frecuentemente se hicieron a costa del medio ambiente. Las realidades globales del cambio climático, en combinación con la creciente urbanización y su pobreza asociada, han elevado la conciencia sobre el impacto ecológico de dicha infraestructura. Los estadounidenses se encuentran actualmente en un momento único de la historia, donde la política, la economía, la ecología y la cultura (el diseño) pueden participar de un movimiento nuevo. Necesitamos un WPA 2.0.

WPA es la sigla en inglés de la Administración de Proyectos de Obras (1935–1943), el programa más grande y ambicioso del New Deal del presidente de los EE.UU. Franklin D. Roosevelt durante la Gran Depresión. Gran parte de la infraestructura actual de los Estados Unidos fue construida ya sea por la WPA o la entidad de nombre similar PWA (sigla en inglés de Administración de Obras Públicas). Casi todas las ciudades, pueblos y comunidades de los Estados Unidos se beneficiaron de un aeropuerto, puente, embalse, parque, camino, escuela u otro edificio público construido por WPA o PWA.1

Reflexionemos ahora, aunque sea brevemente, sobre el historial de proyectos de obras públicas en los Estados Unidos, para discernir dónde se encuentra la nación más rica del mundo hoy en términos de su infraestructura urbana. Esto nos permitirá vislumbrar cómo los arquitectos de paisajes, arquitectos y planificadores están abordando las necesidades y oportunidades no sólo de las ciudades estadounidenses sino de comunidades y ciudades en todo el mundo que enfrentan las realidades apremiantes del cambio climático global.

Canales y puertos

Los asentamientos iniciales en los Estados Unidos se agruparon en pueblos y ciudades donde había acceso directo a recursos hídricos. Vías navegables, puertos seguros y acceso a agua dulce para combatir incendios, saneamiento, producción de energía, agricultura y bebida fueron elementos esenciales en el desarrollo de los principales centros comerciales. La construcción del canal de Erie (1817–1825), por ejemplo, convirtió a Nueva York en la capital financiera del mundo en el siglo XIX al abrir líneas de suministro críticas para maderas, pieles, minerales y productos agrícolas, que ayudaron al Norte a ganar la Guerra Civil (1861–1865). Desde entonces, hemos observado el desacople gradual de los sistemas de transporte urbano del entorno físico en los Estados Unidos.

La cuadrícula

Si miramos hacia el pasado en los Estados Unidos del siglo XIX, los ideales del Destino Manifiesto y el mito agrario impulsaron la necesidad de organizar y cultivar las fronteras occidentales del país. La Ley de Ordenanza del Suelo de 1785 fue una resolución escrita por Thomas Jefferson (1743–1826), en ese entonces un delegado de Virginia, para crear un sistema federal para relevar y vender terrenos federales al oeste de los Apalaches, con el fin de financiar el gobierno federal en un momento en que no podía obtener recursos fiscales por medio de la fijación de impuestos.2 Eso fue lo que inició el desacople de los sistemas ambientales y de desarrollo en gran escala: El sistema de relevamiento de suelo público parceló el suelo en cuadrículas de territorios, pueblos y secciones, sea cual fuere la geomorfologia o las características de la propiedad. Los territorios (24 x 24 millas; 38,624 x 38,624 kilómetros), pueblos (6 x 6 millas; 9,656 x 9,656 kilómetros) y secciones (1 x 1 milla; 1,609 x 1,609 kilómetros) se numeraron y organizaron boustrofedónicamente, un patrón alternante desde el vértice superior derecho al cuadrante inferior izquierdo de un cuadrado, similar al paso que un agricultor seguiría al arar un campo.3

Agricultores, ferrocarriles y la cuadrícula

Cuando Horace Greeley (1811–1872), el famoso editor de The New York Herald Tribune, presuntamente declaró en un editorial (13 de julio de 1865) “Ve al Oeste, joven, ve al Oeste y haz crecer el país”, estaba convocando al país.4 Greely estaba respondiendo en parte a la Ley de Asentamientos Rurales de 1862, que permitió a veteranos, esclavos liberados e incluso a mujeres reclamar una media sección de suelo (649 acres, 260 hectáreas) si estaban dispuestos a vivir en ella y mejorarla durante cinco años, promoviendo aún más los valores agrarios que formaban parte del nacionalismo estadounidense nacido en un momento de rápida industrialización. El Destino Manifiesto y la cultura agraria, como lo caracterizó décadas antes de Crèvecoeur (1785–1813) en numerosos libros, mitologizó la agricultura, promoviendo la vida rural como una manera de formar el carácter.5 No obstante la cuadriculación de los Estados Unidos y el desarrollo subsiguiente de las líneas ferroviarias nacionales permitió al gobierno conceder más de 300 millones de acres (121.405.693 hectáreas) a las compañías ferroviarias, que no dependían de los sistemas naturales para su desarrollo; en su lugar, ambas partes trabajaron para contrarrestar las vías de agua y la topografía que encontraban a su paso, algunas de ellas extremas.

La supremacía sobre el paisaje tenía sus límites. Si bien las líneas ferroviarias intentaban llegar a rincones previamente inaccesibles del país, facilitando el comercio, requerían para sus trochas una pendiente muy gradual y prolongada, y abundante agua dulce para sus locomotoras, limitando así el acceso universal. Las granjas y pueblos se establecieron sobre o cerca de las nuevas líneas de ferrocarril, pero el suelo en los climas más áridos al oeste del meridiano 100 no tenían la misma capacidad de producción económica que la Virginia de Thomas Jefferson.6 Las parcelas de medias secciones tenían que combinarse y anexarse para permitir su uso productivo para madera o pastoreo, afectando en forma significativa los terrenos autóctonos. Se fue adoptando una explotación de gran escala, alejándose de los ideales de la granja rural. Los colonos del Oeste y también los transcendentalistas no pensaron en las consecuencias de introducir comunidades de plantas no nativas en detrimento del entorno autóctono.

Un hito de la Revolución Industrial en los Estados Unidos fue el primer enlace transcontinental de líneas ferroviarias. Los ferrocarriles Union y Central Pacific se encontraron en el Pico del Promontorio del Territorio de Utah, cerca de lo que es hoy Brigham City, el 10 de mayo de 1869. La infraestructura, vinculada con los sistemas naturales durante los dos primeros siglos y medio del desarrollo del país, ahora podía seguir un trayecto mucho más flexible. Para 1910, había una red de más de 250.000 millas (402.336 kilómetros) de vías ferroviarias en los Estados Unidos. Al mismo tiempo que ocurría este crecimiento de infraestructura, las vías de agua del país pasaron de ser elementos críticos para la marcha de la economía a sitios de desecho convenientes. Carolyn Merchant observó: “En los Estados Unidos, los productos químicos y desechos industriales, como el ácido sulfúrico, la soda cáustica, el ácido muriático, la cal, las tinturas, la pulpa de madera y los subproductos animales de las fábricas industriales contaminaron las aguas del Noreste.”7 La contaminación persistente de ríos, canales y puertos obligó a las comunidades a lidiar con las consecuencias de años de abusos ecológicos, a pesar de los beneficios de la Ley de Agua Limpia de 1972.

Si bien los sistemas naturales perdieron importancia como redes de acceso, siguieron siendo críticos para el suministro de materias primas. La relación entre los derechos de agua y las líneas ferroviarias, por ejemplo, fue crítica no sólo porque hacía falta agua limpia para impulsar las locomotoras a vapor, sino también porque la relación entre la agricultura y los sistemas de transporte por ferrocarril abrió nuevas áreas del país al desarrollo y el comercio de materias primas, como el maíz y el trigo, que son cultivos clave hasta el día de hoy.

Alcantarillado combinado

Cuando el plomero inglés Thomas Crapper (1836–1910) popularizó el uso del inodoro en la década de 1860, sin duda no tuvo idea del futuro impacto potencial de su invención sobre los sistemas municipales de administración de agua. Su trabajo desencadenó una cascada de sucesos que llevaron a la degradación de las vías hídricas globales 150 años más tarde. La rápida urbanización de los Estados Unidos durante el siglo XIX creó la necesidad de administrar colectivamente los desechos sanitarios. En busca de innovación, los Estados Unidos miraron a Europa, donde se había desarrollado una nueva forma de infraestructura –el sistema unitario de alcantarillado– para procesar el aumento de desecho sanitario de los inodoros. El desbordamiento de los sistemas unitarios (DSU) genera un brebaje de escurrimiento de aguas superficiales y aguas servidas en cuerpos de agua vecinos, creando demasiado efluente para la capacidad de procesamiento de las plantas de tratamiento. Hoy en día, la Ciudad de Nueva York, como otras 772 ciudades de los EE.UU. tiene un sistema de alcantarillado unitario donde, aún con una lluvia ligera, los desechos sanitarios y de las aguas de tormenta se combinan, liberando excrementos, preservativos, aceite, plaguicidas y metales pesados en el puerto y los ríos de Nueva York.

Alrededor del mundo, los sistemas unitarios que combinan aguas servidas con las aguas de tormenta en una sola tubería (en su momento una solución de infraestructura revolucionaria) han llegado a su límite. El crecimiento de las poblaciones urbanas y las superficies impermeables sobrecargan en forma permanente los sistemas de tratamiento de aguas servidas en ciudades de todo el mundo. Con las aguas servidas desbordando más frecuentemente en las vías de agua, y el aumento del nivel del mar que compromete aún más los sistemas de desagüe, los gestores de políticas e incluso los financistas privados tienen que empoderar a los diseñadores para repensar el diseño y la gestión de las aguas de tormenta y los sistemas hídricos de saneamiento urbano. Las tormentas más severas y frecuentes debido al cambio climático afectarán cada vez más la zona costera posindustrial reforzada. Se deben adoptar planes de adaptación para las ciudades costeras basados en un diseño urbano innovador que pueda disipar las fuerzas de las marejadas, controlar las inundaciones, reducir el escurrimiento de aguas superficiales y reducir el efecto de las islas de calor. Si no se producen cambios tecnológicos importantes, la gestión de recursos naturales y humanos de la salud y la productividad global quedarán comprometidas.

El New Deal

A partir de 1933, en el nadir de la Gran Depresión, los líderes políticos de los Estados Unidos lanzaron programas bajo el New Deal para ofrecer ayuda a la cantidad masiva de estadounidenses desempleados y subempleados, crear una recuperación gradual en el sector económico y reformar el sistema financiero. Al mismo tiempo, y en forma significativa, los programas del New Deal también transformaron la infraestructura crítica del país. Se crearon caminos, estructuras de gestión hídrica y redes de electrificación para brindar acceso, saneamiento y energía a áreas previamente no desarrolladas del país. También se construyeron parques, edificios públicos, puentes, aeropuertos y otros proyectos cívicos. En la administración del Presidente Franklin D. Roosevelt, los programas de la WPA dieron trabajo a millones de personas desempleadas, entre ellas las mujeres y minorías, para construir una nueva identidad cultural para la nación.

Una de las características de los programas del New Deal fue el aporte de artistas, escritores, arquitectos de paisaje, arquitectos y otros profesionales creativos –valuado en US$20.000 millones (más de US$347.000 millones al valor de hoy)– que ayudó a conformar la imagen y el arraigo cultural del país durante el siglo XX. Legiones de trabajadores, guiados por diseñadores y burócratas, produjeron localmente una paleta de materiales regional para crear obras extraordinariamente bellas pero prácticas que reflejaron el orgullo nacional y la conciencia cívica. Estas obras eran modernas y aspiracionales, demostrando el carácter y los materiales de cada lugar. El Presidente Roosevelt comprendió la necesidad de una acción gubernamental en gran escala para ayudar a que el país se volviera a poner en marcha y orientarlo hacia una nueva dirección.

El sistema federal de autopistas

Dos décadas más tarde, después de la Segunda Guerra Mundial y la Guerra de Corea, el Presidente Dwight D. Eisenhower firmó en 1956 la Ley de Autopistas con Ayuda Federal. El sistema transcontinental de autopistas, también conocido como la Ley Nacional de Autopistas para la Defensa Interestatal, se presentó al público como una necesidad esencial para la defensa nacional y se financió a un costo de US$25.000 millones por medio de un impuesto sobre la gasolina y el diésel. El término “infraestructura”, creado durante la Segunda Guerra Mundial para describir operaciones de logística militar, se convirtió en una de las iniciativas más visibles y duraderas del presidente, expresada en el sistema de autopistas interestatales de los EE.UU. Eisenhower, el general de cinco estrellas y comandante supremo de las Fuerzas Aliadas en Europa durante la guerra, admiraba la eficiencia de las autobahns alemanas y quiso crear un sistema similar en los Estados Unidos. Las normas unificadas de diseño para el país, una expresión de los principios del modernismo, vislumbraron el potencial de la tecnología para superar los obstáculos geofísicos del paisaje con obras de ingeniería. El proyecto catalizó el desarrollo de las nuevas megarregiones expandidas de fines del siglo XX.

Desacople

El sociólogo y filósofo Jürgen Habermas (nacido en 1929), en su ensayo de 1999 titulado “Desacople del sistema y el mundo de la vida” (“The Uncoupling of System and Lifeworld”) sugirió que los procesos de diferenciación y especialización inherentes al modernismo no son democráticos, y que un sistema democrático de liderazgo en las sociedades capitalistas avanzadas como los Estados Unidos permite tomar decisiones que no son un reflejo de la voz más amplia de la sociedad: 

Pero la dominación política tiene un poder de integración social en la medida que la disposición sobre un medio de sanción no dependa de una represión abierta sino de la autoridad de una oficina anclada a su vez en el orden legal. Por esta razón, las leyes tienen que ser reconocidas inter-subjetivamente por los ciudadanos; tienen que ser legitimadas como correctas y apropiadas. Esto deja a la cultura la tarea de suministrar las razones por las que el orden político existente merece ser reconocido.8

En un sistema democrático, los líderes reciben el poder para tomar decisiones masivas sobre la conformación de su país, lo que se podría caracterizar como “fe ciega” en el poder paternalista, que se potencia al acoplarse con el miedo y la fatiga de posguerra. En el periodo posterior a la Segunda Guerra Mundial reinó la tecnología, y la cultura estadounidense fue tal que el desacople de los sistemas (como las autopistas interestatales) del mundo de la vida (el entorno social y físico) –al ser presentado por un héroe de la guerra convertido en presidente– creó el balance necesario de paternalismo e idealismo para respaldar políticamente el proyecto de obra pública más grande de la historia de los EE.UU.

Mientras los grupos reprimidos, asfixiados por los métodos modernistas basados en sistemas, encontraron su voz a finales del siglo XX, la cultura fue infundida por la necesidad de tener “voces distintas” (plagiando un término de Carol Gilligan).9 El movimiento feminista, el movimiento de derechos civiles y el movimiento ecológico moderno sumaron sus voces locales y personales contra la racionalidad insoportable de las estructuras actuales de poder. Para el movimiento ecológico, esto contribuyó a legislación importante, como la Ley de Aire Limpio de 1963 y la Ley de Agua Limpia de 1972.

El problema

Muchos de los proyectos completados durante el New Deal están llegando al fin de su vida útil. Como observó James L. Oberstar:

Casi sesenta años después de haber construido la mayor parte del sistema de autopistas estatales en las décadas de 1950 y 1960, estamos viendo que muchas obras están llegando al límite de su vida de diseño, o peor. El sistema de transporte de superficie de calidad mundial heredado de generaciones anteriores de estadounidenses ha llegado a la obsolescencia y ahora se tiene que reconstruir.10

Muchos canales y puertos ya no se usan para el comercio con la misma intensidad de antes y, en muchos casos, están decaídos, subutilizados, contaminados y sometidos al nivel creciente del mar y las marejadas. Menos de la mitad de las 300.000 millas (482.803 kilómetros) originales de corredores ferroviarios de los Estados Unidos se sigue usando para el transporte ferroviario.11 Las 772 ciudades de los Estados Unidos tienen sistemas de alcantarillado unitarios que siguen vertiendo cantidades significativas de aguas servidas en las vías hídricas. Las autopistas y los puentes se encuentran en similares condiciones de deterioro. La reparación y el recambio de estos sistemas monumentales de infraestructura en sus configuraciones actuales no reflejan los avances sociales, medioambientales y tecnológicos que se han producido en el último medio siglo.

Cada cuatro años, la Sociedad Americana de Ingenieros Civiles publica un boletín de calificaciones sobre la infraestructura de los Estados Unidos. He aquí las notas para 2013 y 2009:

Categorías 2013 2009

Aviación/Aeropuertos

D D
Puentes C+ D
Embalses D D
Agua potable D D-
Energía D+ D+
Desperdicios peligrosos D D
Vías fluviales internas D- D-
Diques D D-
Puertos C (N.C.)
Parques públicos y recreación C- C-
Ferrocarril C+ C-
Caminos D D-
Escuelas D D
Desperdicios sólidos B- C+
Transporte D D
Aguas servidas D D-
Calificación Total D+ D

D = Pobre; C = Mediocre; B = Buena.12

Una combinación sin precedentes de problemas ambientales muy preocupantes, la evolución política, y nuevos diseños y tecnologías, presentan ahora una oportunidad sin par para mejorar la infraestructura de los Estados Unidos. Dada la realidad del cambio climático global y la creciente urbanización y el crecimiento de la población, equipos interdisciplinarios de pensadores tienen que desarrollar modelos de diseño urbano para sistemas hidrológicos, de transporte, ecológicos, económicos y culturales para que las ciudades se desempeñen mejor y sean lugares más atractivos para trabajar, vivir y criar familias. No está claro si el trabajo será impulsado principalmente por el gobierno federal, como en Francia o los Países Bajos, o por medio de modelos de sociedad pública privada, más comunes en los Estados Unidos. El papel crucial del diseño en la esfera pública está subvaluado, y las actitudes tienen que cambiar.

Es crítico comprender cómo funcionan la geografía física, la ecología y el clima para desarrollar nuevos tipos de infraestructura que respondan mejor a las fuerzas de la naturaleza. La idea de usar sistemas naturales para brindar amenidades públicas y beneficios de salud no es nueva. Frederick Law Olmsted (1822–1903), por ejemplo, usó los flujos de marea para reducir la pestilencia y la contaminación en su diseño y plan para los pantanos del Back Bay en Boston a fines de la década de 1880. Con los avances de la tecnología después de la Revolución Industrial, las soluciones de ingeniería se consideraron superiores al precedente histórico. La respuesta fue visualizar la infraestructura como una máquina. Como se observó después de los huracanes Katrina (2005), Irene (2011) y Sandy (2012), los sistemas de ingeniería son inflexibles y pueden fracasar, con consecuencias catastróficas a medida que la gravedad, frecuencia e intensidad de las tormentas aumentan.

Ha llegado el momento de repensar el modelo de ingeniería de los siglos XIX y XX, y considerar opciones que puedan funcionar una vez más en concierto con el ambiente natural. En muchas áreas rurales, los caminos se alinearon tradicionalmente con los ríos porque eran más baratos de construir, pero los caminos y puentes de Vermont fueron destruidos en minutos por los ríos inflamados por la inundación durante el huracán Irene. En el área metropolitana de Nueva York, las autopistas, los patios de maniobras de ferrocarril, túneles y viviendas públicas ubicadas en las llanuras de inundación junto a la zona costera posindustrial, donde el suelo era barato, se inundaron severamente durante el huracán Sandy en 2012. El reemplazo de los trenes del sistema PATH en Nueva Jersey y la reconstrucción de túneles inundados y otras propiedades públicas y privadas en áreas propensas a inundaciones más frecuentes está costando a los contribuyentes cientos de millones de dólares por año cuando se declaran estados de emergencia con tanta frecuencia. Miami está asentada sobre un lecho permeable de piedra caliza en la interfaz entre el agua salada y el agua dulce, y es sometida a huracanes e inundaciones frecuentes provenientes de la costa o de tierra adentro, que amenazan no sólo su industria más importante, el turismo, sino también la salud ecológica de los Everglades.13

En muchas ciudades de los Estados Unidos, los sistemas de alcantarillado unitario fueron una solución económica de ingeniería sanitaria, hasta que el cambio climático y el crecimiento de la población cambiaron el balance contable. Hoy en día, los diseñadores y funcionarios públicos estudian frecuentemente la tecnología de gestión de agua utilizada en Europa. Las municipalidades estadounidenses se fijaron primero en ejemplos de alcantarillado unitario de Francia y Alemania, y ahora están estudiando los sistemas de control de inundación de los holandeses. El término “Países Bajos” se define a sí mismo, y su estrategia de planificación mira 200 años hacia el futuro (el largo plazo), al mismo tiempo que reconstruye permanentemente embalses, diques y pólderes (corto plazo) para proteger no sólo el entorno edificado sino la economía agrícola que depende del agua dulce. En los Estados Unidos, las municipalidades necesitan mirar hacia el futuro y descubrir las oportunidades reales para desarrollar innovaciones basadas en la diversidad geográfica del país. El prominente geógrafo Gilbert F. White (1911–2006), al referirse a la política nacional de control de inundaciones en 1934, señaló que el programa de muchos miles de millones de dólares para construir reservorios, canales y diques, y excavar canales fluviales más profundos, no redujo las pérdidas por inundación décadas más tarde. En sus propias palabras:

Al postular que sólo era necesario realizar obras de ingeniería para controlar el costo de las vías fluviales con tendencia al desborde, se descuidaron otros métodos posiblemente efectivos. Se prestó poca o nada de atención a otras alternativas, como la regulación del uso del suelo y la construcción de edificios a prueba de inundación. Al suponer que las obras de ingeniería reflejarían lo que los cálculos de costo-beneficio habían pronosticado en forma solemne, sin intentar verificar los resultados prácticos sobre el uso del suelo, el público cosechó efectos bastante distintos.14

La dependencia de las estructuras de gestión hídrica en los Estados Unidos genera por lo tanto un falso sentido de seguridad con respecto a la disponibilidad, costo y protección contra inundaciones catastróficas. White sugirió además que el “dique de propósito único puede generar una sensación de confianza para el caso de una catástrofe posterior; un reservorio de propósito único puede apropiar un solo embalse sin garantizar una reducción completa de las pérdidas por inundación”.15 White propuso en muchos de sus ensayos –escritos en un periodo de 60 años como estimado profesor de geografía y asesor gubernamental sobre peligros naturales e inundación– un método más abarcador para diseñar, planificar y medir la efectividad de la tecnología.

Soluciones

Sabemos que los bordes costeros de amortiguación gradual y las islas de barrera pueden disipar la energía de las olas, detener la inundación de agua salada y crear un hábitat que también ayude a secuestrar el carbono. La función de los arrecifes de barrera, las marismas y los pantanos de cipreses pueden inspirar nuevos modelos de gestión de ecosistemas. La planificación y el diseño para lidiar con las crecientes periódicas de ríos y arroyos bien pueden necesitar un plan de incentivos como Zone (A)ir para reubicar casas, pueblos, caminos, comunidades y empresas. Es fundamental que adaptemos la arquitectura (edificios) y la arquitectura de paisajes (infraestructura y espacio exterior) para repensar la porosidad del terreno, los materiales de construcción, la reubicación de sistemas mecánicos y el acceso. 

En concreto: Nuestros caminos pueden absorber agua, las cunetas de nuestras autopistas pueden cubrirse con parques que limpien el aire y proporcionen espacios recreativos, y nuestras costas pueden tener una combinación alternada de bordes duros para facilitar el comercio y bordes más blandos para proteger propiedades valiosas tierra arriba. La clave de todo este pensamiento es la interfaz entre la ocupación humana y el medio ambiente.

El comienzo de este trabajo de diseño y planificación ecológica ya se están dando a conocer en Chicago, Filadelfia y Portland, Oregón, donde cunetas en las aceras y pavimentos porosos se están convirtiendo en parte del entramado habitual de las calles. La Ciudad de Nueva York también está realizando proyectos piloto para probar la efectividad de nuevos materiales e ideas, pero estas pruebas toman tiempo, y hace falta acción. En las llanuras de inundación a lo largo del río Mississippi, las comunidades con poca de población se están reubicando y se han abierto vertientes para inundar tierras agrícolas para que los centros de población aguas abajo estén más seguros. No podemos forzar el flujo de agua, como antes creíamos. Es necesario planificación y acciones a largo plazo y a gran escala para reducir nuestro impacto sobre el suelo, trabajando en concierto con los sistemas naturales y habilitando nuevos sistemas de intercambio para reducir el impacto de la fuerza de la naturaleza.

Gilbert White sugirió hace mucho tiempo un método regional holístico e integrado para una gestión hídrica prudente, pero su llamado cayó en oídos sordos, y se construyeron en vez soluciones de ingeniería de propósito único para problemas locales, sin considerar las cuencas de agua o el alcantarillado. Mientras los pueblos y ciudades trabajan ahora para manejar la infraestructura anticuada que no puede resistir el impacto de tormentas muy frecuentes y la crecida del mar, tienen una oportunidad única para adoptar nuevos pensamientos y tecnología que, más de cuarenta años después de promulgada la Ley de Agua Limpia, aminoren las cargas cotidianas y de tormenta de aguas servidas con nuevos métodos de ingeniería grises/verdes.16 Los costos de la nueva infraestructura son reales: Al presente, se necesitarán aproximadamente US$95.000 millones para mitigar el desborde de los sistemas de alcantarillado unitarios para poder cumplir con la ley de 1972. Simultáneamente, serán necesarios cientos de miles de millones de dólares para proteger las comunidades y las ciudades contra inundaciones futuras. Se deberían combinar los recursos para abordar estos temas, ahorrando costos y aumentando la eficiencia.

La expansión de nuevas redes de infraestructura verde, donde se eliminan las superficies impermeables, se protegen los servicios públicos y las aguas de tormenta se canalizan para la irrigación de parques públicos, jardines y humedales, también puede ayudar a mitigar y absorber las inundaciones. Los sistemas de infraestructura verde (basados en la naturaleza) nos permiten repensar no sólo las funciones principales de la infraestructura, sino también nuestra experiencia de la naturaleza en la ciudad. Las municipalidades tienen la oportunidad de diseñar y planificar de la manera más integral y económica. La supervivencia de pueblos y ciudades que se encuentran actualmente al nivel del mar, o apenas por encima de él, depende de un replanteamiento amplio de la infraestructura para resistir los cambios climáticos y las tormentas destructivas. Como sabemos, aun si todas las 196 naciones cumplieran con sus compromisos asumidos en París en diciembre de 2015 para mitigar los efectos del cambio climático, los niveles globales del mar subirán por lo menos 3 a 4 pies (0,914 a 1,219 metros) en los próximos cien años, y todas las áreas costeras del mundo con elevaciones menores a 15 pies (4,572 metros) quedarán extremadamente vulnerables a las mareas altas y las marejadas.17

WPA 2.0: Un nuevo sistema de infraestructura natural

En respuesta a las 285 muertes y la extensa devastación (daños por más de US$50.000 millones) causada por el huracán Sandy (2012), los tres niveles del gobierno de los EE.UU. (federal, estatal y local) crearon comisiones, comités de trabajo, iniciativas especiales, libros blancos, planes de 12 pasos, paneles plenarios y programas de revitalización costera, todos ellos con connotaciones vagamente militares para transmitir acción y fuerza. ¿Pero sucederá algo a consecuencia de sus recomendaciones? ¿Cómo se podrán financiar sus diseños y planes ambiciosos para modificar y mejorar nuestra infraestructura municipal, estatal y nacional para resistir los impactos climáticos habituales y extremos? Para mitigar y contrarrestar los efectos de una infraestructura anticuada y mal equipada y prepararse ahora para un cambio climático global, y para financiar una nueva red de defensa resiliente, propongo WPA 2.0 como una solución oportuna y muy necesaria.

La nueva infraestructura necesaria para adaptar las ciudades, comunidades y el campo de esta nación a las realidades de las inundaciones y los cambios climáticos globales demandará una reconstrucción a escala masiva, con sistemas de infraestructura tanto grises como verdes. Las soluciones de ingeniería “grises”, inflexibles y tradicionales, que requieren la impermeabilización de sistemas de transporte, túneles y servicios públicos, o el desvío de aguas con diques, canales y barreras, funcionarán mejor cuando se acompañen con métodos más “verdes”, resilientes y ecológicos, como el uso de corrientes y el viento para distribuir el sedimento a nuevas islas de barrera, la reutilización de los materiales de dragado para crear bajíos para humedales, el rediseño de las calles para absorber y filtrar las aguas de tormenta, y la propagación de una serie de plantas acuáticas para crear un amortiguador ecológicamente rico contra las marejadas, expandiendo las zonas de inundación natural (y pagando para mudar a la gente y las empresas que allí se encuentran) para que también funcionen como parques la mayor parte del tiempo, la eliminación de las aguas de tormenta de las carreteras y la captura del escurrimiento laminar en parques esponjosos, entre otros sistemas de captura de aguas de tormenta.

Como se señaló anteriormente, durante la Gran Depresión los programas del New Deal del Presidente Franklin D. Roosevelt crearon diseños robustos, de alta calidad y bellos de infraestructura pública con un gasto nacional de US$20.000 millones, en un momento en que el producto interno bruto era de sólo US$73.000 millones. Los programas crearon millones de empleos, ayudaron a restaurar la estabilidad económica y reformaron un sistema bancario defectuoso. La Autoridad del Valle de Tennessee (TVA) fue el emprendimiento más grande del New Deal. Se formó para aprovechar y manejar las vías de agua de la cuenca del río Tennessee en siete estados, crear una empresa de servicios públicos y dirigir numerosos recursos a una región empobrecida del país. Junto con la gestión de agua para prevenir inundaciones anuales y administrar la navegación, la promulgación de la Ley de TVA por parte del Presidente Roosevelt creó embalses para la producción y el suministro de electricidad a menor costo en un momento en que las usinas privadas estaban explotando a clientes con problemas económicos. Y mientras la TVA era una usina eléctrica que aprovechó la energía hídrica para generar electricidad, en la década de 1950 se agregaron usinas de carbón y para la década de 1970 usinas nucleares para satisfacer la demanda creciente de energía. La producción de energía es la raíz del calentamiento global.

La necesidad de mayor resiliencia climática urbana es una consecuencia del calentamiento global, y las emisiones de la combustión son una de sus fuentes principales. Según la Agencia de Protección Ambiental (EPA) de los EE.UU., creada en 1970 por un decreto del Presidente Richard M. Nixon, las usinas eléctricas, refinerías y manufacturas químicas generaron casi el 84 por ciento de las emisiones totales reportadas de dióxido de carbono, metano, óxido nitroso y gases fluorados en 2013.18 Un impuesto modesto sobre las compañías responsables por la mayor parte de la contaminación que afecta el clima, como las usinas de electricidad, compañías de automóviles, compañías de petróleo y otros contaminadores industriales, podrían generar los recursos necesarios para crear un Fondo de Defensa Natural y financiar un plan de infraestructura resiliente al cambio climático para el próximo siglo. La idea de tributar el carbono no es nueva. Un impuesto sobre los mayores emisores de carbono y contaminadores de agua podría crear un fondo dedicado a la resiliencia climática urbana y rural. Y las corporaciones lo pueden pagar. Aun con los precios de energía en sus valores históricos mínimos, las 10 usinas de electricidad más grandes, por ejemplo, reportaron ventas por más de US$17.000 millones en 2014 y las 10 refinerías de petróleo más grandes de la lista Fortune 500 declararon ganancias por casi US$67.000 millones en 2015.

En 2014, el gobierno de los EE.UU. autorizó casi US$50.000 millones para reparar el daño causado por el huracán Sandy. Si bien no se destinaron más fondos para nuevos sistemas de defensa, el Presidente Barack Obama incluyó US$1.000 millones en su presupuesto de 2015 para un fondo de resiliencia climática. Este fue un buen comienzo. En el año fiscal 2015, el presupuesto para las autopistas federales incluyó US$48.600 millones para reparar un sistema de infraestructura que se encuentra casi al final de su vida útil. En las próximas dos décadas, las ciudades del país tendrán que gastar por lo menos US$100.000 millones para limpiar el escurrimiento de aguas de tormenta y reducir el desborde de sistemas unitarios (DSU) para cumplir con la Ley de Agua Limpia de 1972. Es poco probable que ya sea las comunidades locales o el gobierno federal obtengan los fondos necesarios de los contribuyentes. Por lo tanto, un impuesto modesto sobre las industrias cuyas prácticas han causado el cambio climático global podría crear un Fondo de Defensa Natural. Si un Sistema de Infraestructura Natural tuviera los fondos equivalentes a la WPA del New Deal, habría un nivel de financiamiento para obras públicas resilientes para el próximo siglo y más allá que realmente marcaría una diferencia. Como los esfuerzos realizados en tiempos de guerra o para ayudar al país a recuperarse de la Gran Depresión, un programa importante de renovación y desarrollo de la infraestructura del país garantizará la supervivencia de las ciudades, pueblos y áreas rurales, y creará decenas de miles de empleos permanentes tanto en el sector público como privado, para diseñar, construir y mantener una nueva infraestructura solamente para aguas de tormenta.

En 2005 fundé DLANDstudio, una firma de diseño interdisciplinaria con sede en Brooklyn, Nueva York, donde hemos estado desarrollando intervenciones y adaptaciones sistemáticas de infraestructura urbana para resolver muchos de los problemas descritos anteriormente. Este trabajo, financiado con una combinación de subvenciones y financiamiento público, consiste en proyectos piloto que son relativamente pequeños, cuando se considera la enormidad del problema. La idea reinante es encontrar pequeños proyectos piloto que, si se aplicaran en gran escala, podrían tener un gran impacto. Nuestros proyectos se desarrollan mayormente en Nueva York, pero nuestra planificación se extiende alrededor del mundo. Uno de nuestros proyectos más importantes es el Sponge Park en el canal de Gowanus, que absorbe, colecta, limpia y filtra agua superficial en uno de los cuerpos de agua más contaminados de los Estados Unidos.

Sponge Park en el canal de Gowanus

El barrio Gowanus de Brooklyn, Nueva York, tiene una historia rica. El área fue originalmente un gran humedal pantanoso, y el sitio del primer asentamiento holandés, de batallas importantes de la Guerra Revolucionaria y de muchas industrias, como energía y construcción. En décadas recientes, el canal fue más conocido por los efectos residuales de la contaminación industrial y los desperdicios municipales.19

Los planificadores vislumbran esta área como un nuevo sitio para desarrollos residenciales de gran envergadura, una propuesta controvertida dadas las proyecciones de aumento en el nivel del mar debido al cambio climático. En este contexto, colaborando de cerca con organizaciones comunitarias locales, agencias gubernamentales y funcionarios electos, DLANDStudio inició y diseñó un nuevo tipo de espacio público abierto llamado Sponge Park™.20

En la Ciudad de Nueva York, una precipitación de 0,10 pulgadas (2,54 milímetros), sobre todo de lluvia, genera un desbordamiento en el sistema de alcantarillado unitario. Los ríos Hudson y East, el arroyo New Town, el estrecho de Long Island, la bahía de Jamaica y el canal de Gowanus son algunos de los cuerpos de agua más importantes afectados por estos desbordes. Sponge Park™ desvía, almacena y trata escurrimiento de aguas de tormenta para minimizar el desborde que ocurre en el canal Gowanus, y sirve de modelo para calles terminales similares que drenan laminarmente en canales, ríos y otros cuerpos de agua de ciudades en todo el mundo.

El diseño de Sponge Park™ valora por partes iguales la importancia estética, programática y productiva de tratar el agua contaminada que fluye en el canal de Gowanus, un sitio designado para descontaminación (Superfund) por la Agencia de Protección Ambiental (EPA, por su sigla en inglés). El parque está diseñado como un paisaje dinámico que mejora el medio ambiente del canal con el tiempo. Este plan innovador propone estrategias modulares para desviar el escurrimiento de aguas de tormenta y crear un parque público a lo largo del canal, reduciendo por lo tanto el ingreso de aguas de tormenta en el sistema de alcantarillado. Las plantas y suelos especiales incluidos en nuestro diseño absorben metales pesados y toxinas del agua contaminada.

Si bien la mayoría de los proyectos de infraestructura urbana tiene sus desafíos, el proyecto Sponge Park tuvo que afrontar no solo capas geomórficas sino también capas de burocracia. Tuvimos que trabajar con no menos de nueve agencias federales, estatales y municipales distintas, cada una de ellas con poder regulador y supervisión sobre parte del área. Como parte de nuestra respuesta creativa a estos desafíos, DLANDStudio obtuvo todo el financiamiento para el diseño y construcción del proyecto del Consejo de las Artes del estado de Nueva York, el Congreso de los EE.UU., el Concejo Municipal de la Ciudad de Nueva York, la Comisión de Control de Contaminación de Agua de Nueva Inglaterra, el Departamento de Conservación Ambiental del Estado de Nueva York, y la Corporación de Instalaciones Medioambientales del Estado de Nueva York. Al usar fondos de subvención, pudimos innovar de una manera que hubiera sido imposible por medio de procedimientos de adquisición normales. Como el proyecto era considerado piloto y fue dirigido por una entidad externa pero con la cooperación del gobierno, pudimos crear un sistema innovador y reproducible. La primera calle terminal absorbe 2 millones de galones (7,5 millones de litros) de aguas de tormenta por año. Si se construyeran Sponge Parks en todas las calles terminales de los cinco barrios de Nueva York, se absorberían y limpiarían más de 270 millones de galones (1.000 millones de litros) de agua antes de que se descarguen en el puerto de Nueva York.

Sistema HOLD

Los Sistemas de Detención Natural de Puentes de Autopista (HOLD, por su sigla en inglés), recolectan y filtran aguas de tormenta de las bajantes de las rutas. Los sistemas HOLD son sistemas de infraestructura plantados, modulares y verdes que absorben y filtran contaminantes como aceites, metales pesados y grasas de los desagües contaminados, creando un escurrimiento mucho más limpio antes de ingresar en los drenajes y las vías de agua. La capacidad del sistema para retener agua cuando llueve copiosamente también mejora la calidad del agua de cuerpos hídricos adyacentes. Las plantas seleccionadas para cada sitio ayudan a descomponer y absorber el cobre, plomo, cadmio, hidrocarburos, zinc y hierro que se encuentran comúnmente en el escurrimiento. Suelos especialmente calibrados maximizan la productividad de las plantas y crean el nivel ideal de drenaje para las necesidades de gestión de aguas de tormenta en toda la ciudad.

Los sistemas HOLD están diseñados para su fácil transporte y despliegue, y también se pueden instalar rápida y fácilmente en lugares de difícil acceso y drenaje en las rutas interestatales. Los sistemas HOLD pueden reducir el impacto que una infraestructura de ruta hace sobre el ciclo hidrológico de áreas vecinas. DLANDstudio ya ha desarrollado tres sistemas modulares, dos a nivel del suelo y otro elevado, para adaptarse a la altura de la napa de agua, la permeabilidad y toxicidad del suelo y la disponibilidad de sol. Estos sistemas están desplegados actualmente en tres lugares de la Ciudad de Nueva York, dos en Flushing Meadows – Corona Park, debajo de la autopista Van Wyck, y uno en el Bronx debajo de la autopista Major Deegan, con financiamiento y apoyo logístico del Departamento de Protección Ambiental de la Ciudad de Nueva York, el Fondo de Futuros del Estrecho de Long Island y la Administración Nacional Oceánica y Atmosférica.

MoMA: “Un nuevo suelo urbano”

“Un nuevo suelo urbano” fue desarrollado por DLANDstudio junto con ARO (sigla en inglés de Oficina de Investigación de Arquitectura) de la Ciudad de Nueva York, como parte de la exhibición “Corrientes ascendentes” del Museo de Arte Moderno (MoMA) en 2010. En esta propuesta ofrecimos una organización integrada y recíproca de sistemas de infraestructura naturales y artificiales. Se usó una combinación de estrategias, como humedales en el perímetro, un borde elevado y muelles absorbentes (paisajes de gestión de agua en viejos muelles para botes), junto con nuevos sistemas de infraestructura de calles alejadas de la costa para proteger el sur de la Isla de Manhattan contra inundaciones en caso de que se produzca otra tormenta grande como el huracán Sandy, que se había reducido a un huracán de categoría 1 cuando azotó las costas de Nueva Jersey, Nueva York y Connecticut.

La propuesta tiene dos componentes que forman un sistema interconectado: calles verdes porosas y un borde gradual. Las calles porosas absorberán las lluvias típicas y ayudarán a mantener el agua superficial fuera del sistema de alcantarillado unitario de la ciudad. Cuando haya tormentas más grandes, las calles filtrarán y transportarán agua a nuevos humedales perimetrales para enriquecer las ecologías costeras.

Se construyen tres sistemas interrelacionados de alta prestación en la costa atlántica para mitigar la elevación esperada del nivel del mar y la fuerza de una marejada: una red de parques, humedales de agua dulce y pantanos salobres. “Un nuevo suelo urbano” ofrece una nueva manera de diseño y planificación urbana que reúne las ecologías naturales con sistemas de infraestructura artificiales para transformar tanto el desempeño como la experiencia de la ciudad. Este plan, propuesto casi dos años antes de que el huracán Sandy inundara el sur de Manhattan, Staten Island, Red Hook y las Rockaways, ha sido citado internacionalmente como un modelo viable para nuevas estrategias cívicas de resiliencia a marejadas y el aumento del nivel del mar.21

BQGreen

Los sistemas de autopistas en los Estados Unidos están diseñados con un solo propósito primario: mover personas y bienes rápidamente de un lugar a otro. Pero, como sociedad, ha llegado el momento de repensar este objetivo singular y limitado, y considerar cómo los sistemas de infraestructura también se pueden convertir en corredores productivos de belleza, cultura, ecología y recreación. El proyecto BQGreen considera uno de esos corredores –la Autopista Brooklyn-Queens (BQE)– y examina en detalle dos lugares a lo largo de su extensión de 11,7 millas (18,829 kilómetros).

La BQE fue propuesta originalmente por la Asociación del Plan Regional a mediados de la década de 1930 para aliviar la congestión de tránsito, facilitar el desarrollo industrial y fortalecer el vínculo entre los barrios de la Ciudad de Nueva York. La BQE difirió de las otras rutas verdes de la ciudad en que permite tanto el tránsito comercial como no comercial. El planificador municipal Robert Moses (1888–1981), como director de la Autoridad del Puente y Túnel Triborough, trazó su recorrido desde el Túnel de Brooklyn Battery cerca de Red Hook hasta la ruta verde Grand Central en Queens. La construcción de la BQE dejó a su paso una secuela de barrios divididos.

Conocemos ejemplos, como el parque Riverside (1875 y 1937) en Manhattan, un parque híbrido de las eras de Olmsted y Moses construido sobre una caja de hormigón ubicada sobre una línea ferroviaria principal, donde es posible intercalar el transporte con extraordinarios parques públicos. La densidad es un concepto urbano ligado a la economía. A medida que el suelo ocupado por los sistemas de infraestructura se hace más valioso, se justifica intercalar capas. Cuando el impacto y los beneficios medioambientales comienzan a ser evaluados en términos económicos, el valor de realizar alteraciones significativas en nuestra red vial se hace más atractivo, en un momento en que la infraestructura de autopistas de los Estados Unidos está llegando al fin de su vida útil y necesita reparaciones significativas. A medida que estos sistemas viejos se van reemplazando, ¿por qué no reexaminarlos y considerar cómo podrían satisfacer las necesidades económicas, ecológicas, recreativas, de salud pública y de circulación fácil de peatones, además del transporte?

DLANDstudio ha examinado dos secciones soterradas de la BQE desde 2005. El proyecto se inició a un nivel teórico, con una subvención del Consejo de las Artes del Estado de Nueva York para examinar las pequeñas áreas de Cobble Hill y Carrol Gardens, para después ampliarse a un barrio muy diferente en la parte sur de Williamsburg, con fondos de la entonces Concejala Diana Reyna. Este último estudio se enfocó en gran detalle sobre las consecuencias económicas, sociales y de salud pública de agregar un parque a este barrio empobrecido. Se realizaron extensas actividades de extensión comunitaria, como visitas a las plazas de juego del barrio, eventos en la iglesia y actuaciones, para estar seguros de reconocer la voz de la comunidad. Se obtuvieron datos sobre la factibilidad financiera de limitar los costos –incluyendo los costos de ventilación y estructurales– como también un análisis sobre la creación de puestos de empleo, el valor inmobiliario y hasta un repunte en las ventas minoristas en las bodegas del barrio. Estudiamos temas de salud pública y descubrimos tasas muy altas de asma y obesidad, como también una escasez relativa de espacios recreativos abiertos para los niños en su etapa vulnerable preadolescente. Descubrimos territorios de pandillas delimitados por la zanja de la autopista, e imaginamos cómo podríamos borrar estas fronteras con nuevas canchas de fútbol y béisbol. Ayudamos a la comunidad a soñar y después llamamos a las agencias para ayudar a concretar esta visión, recibiendo un respaldo formal a la propuesta por parte de los Departamentos de Transporte, Protección Ambiental y Parques y Recreación de la Ciudad de Nueva York. Los llamados a la congresista Nydia Velázquez y la senadora federal Kirsten Gillibrand también dieron resultados positivos. Para alcanzar esta visión hará falta la colaboración de agencias municipales, estatales y federales; nuestro plan de ordenamiento explica por qué este es el proyecto correcto a respaldar para que nuestras comunidades y ciudades sean más eficientes, vivibles y ecológicamente productivas.

La inserción de un espacio abierto de calidad tiene la capacidad no sólo de mejorar la estética de los barrios sino también de ser un catalizador de mejoras ecológicas y económicas en el entorno urbano. Este proyecto estableció una visión de la BQE como un lugar de oportunidad, donde se puedan crear nuevos espacios abiertos introduciendo un corredor ecológico y recreativo, y convirtiendo un paisaje desagradable a la vista en una amenidad pública.

QueensWay

Ya se han convertido 20.000 millas (32.187 kilómetros) de corredores ferroviarios abandonados en sendas verdes para ciclistas y peatones a lo largo de los Estados Unidos.22 El Plan de Visión de QueensWay, comisionado por el Fideicomiso de Suelo Público (TPL, por su sigla en inglés), una organización sin fines de lucro fundada en 1972, es una de las iniciativas nacionales actuales de dicha organización para transformar antiguas servidumbres municipales en sendas verdes para una comunidad activa y participante. El proyecto involucra la conversión de una ex línea del ferrocarril de Long Island en un nuevo corredor de espacio abierto al público.

La historia del desarrollo de suelo en Queens ha sido definida en gran medida por las numerosas líneas ferroviarias que han subdividido los sectores de suelo abierto a fines del siglo XIX y comienzos del siglo XX. El proyecto QueensWay se apropia de uno de estos lineamientos de infraestructura para obtener el efecto opuesto: un elemento unificador. Cada uno de los tres segmentos principales de QueensWay –norte, centro y sur– posee características físicas distintivas que crean oportunidades escénicas únicas para la interacción del espacio urbano y natural. En su trayecto de 3,5 millas (5,633 kilómetros) de longitud, esta ex servidumbre se transforma de un terraplén elevado a un barranco y después a un viaducto de acero elevado. Las adyacencias a lo largo de QueensWay también varían, con canchas para béisbol infantil en el extremo norte; lotes de estacionamiento de grandes tiendas minoristas, barrios residenciales y un parque público en el centro; y cruces de líneas ferroviarias, corredores comerciales y lotes de estacionamiento al sur. Temas como la seguridad y la privacidad de las propiedades adyacentes se relacionan directamente con la manera en que las antiguas líneas ferroviarias atravesaban el paisaje urbano. QueensWay, una presencia silenciosa en la ciudad, camuflada por autobuses escolares estacionados, enredaderas descuidadas, industria ligera y un acceso limitado, tiene el potencial de transformarse en una amenidad recreativa y ecológica bella para la comunidad.

El futuro

John Wesley Powell (1834–1902), uno de los geólogos, agrimensores científicos y exploradores más grandes de los Estados Unidos, en su famoso “Informe sobre los suelos de la región árida de los Estados Unidos” de 1878, llamó a comprender mejor el clima y la capacidad económica del sudoeste estadounidense, reconociendo que no todos los paisajes y su capacidad para el desarrollo humano son iguales:

En gran medida, la redención de estos suelos exigirá planes extensos e integrales, para cuya ejecución será necesario un gran capital acumulado o trabajo cooperativo. . . . Mi propósito no fue sólo considerar el carácter de los suelos en sí mismo, sino también los problemas de ingeniería involucrados en su redención y, más aún, hacer sugerencias sobre la acción legislativa necesaria para iniciar los emprendimientos que rescatarán en última instancia estos suelos de su estado presente, sin valor alguno.23

Powell escribía en un momento en que los cambios masivos del paisaje estadounidense, y sus impactos resultantes, recién se empezaban a comprender. Estamos ahora en una etapa histórica similar, cuando el cambio climático global y un reconocimiento general del impacto de la gente sobre el medio ambiente natural están causando consecuencias potencialmente catastróficas. Powell, Gilbert White y Jürgen Habermas, escribiendo en distintas épocas, llamaron a integrar el pensamiento disciplinario y social sobre nuestra interacción con el mundo físico, comenzando con la capacidad natural inherente del medio ambiento para desempeñarse. Si bien atacaron los problemas desde perspectivas distintas, también comprendieron la necesidad de una estrategia multivalente e interdisciplinaria para nuestra ocupación del planeta, con métricas ecológicas, económicas, sociológicas y artísticas.

La inversión sin precedentes y única en el paisaje de los Estados Unidos durante el New Deal y la posguerra proporcionan modelos reproducibles para desarrollar nuevos sistemas de infraestructura que ayuden a reducir el impacto de la urbanización y el cambio climático. Nuevas tecnologías y métodos de infraestructura que valoren el trabajo con sistemas naturales pueden ayudar a crear sistemas que se hagan más robustas y resilientes con el tiempo. Hace falta voluntad colectiva, nuevos modelos de financiamiento –público o privado– y un liderazgo fuerte para que WPA 2.0 sea un sistema de infraestructura natural que reduzca el impacto humano sobre la biota global. 

 

Susannah Drake es la fundadora y dueña de DLANDstudio Architecture and Landscape Architecture, cuya propuesta “Corrientes ascendentes y el nuevo suelo urbano” forma parte de la colección permanente del Museo de Arte Moderno y el Museo de Diseño Cooper-Hewitt. Desde 2005 ha enseñado en Harvard, IIT, FIU, CCNY, Syracuse, Universidad de Washington en St. Louis y The Cooper Union. Sus obras y artículos han aparecido en National Geographic y The New York Times y ha contribuido a Urbanismo infraestructural (DOM Publishers, 2011), Debajo del tren elevado (Design Trust for Public Space, 2015), DEMO:POLIS (Akademie der Künste, 2016) y Naturaleza y ciudades: El imperativo ecológico en el diseño y la planificación urbana (Instituto Lincoln de Políticas de Suelo, 2016).

Dibujo cortesía de DLANDstudio Architecture + Landscape Architecture, PLLC.

 


 

1. WPA y PWA fueron programas del New Deal durante la Gran Depresión. A pesar de sus siglas similares, tenían distinciones críticas: Primero, los trabajadores de WPA eran contratados directamente por el gobierno, mientras que PWA contrató gran parte de su trabajo a entidades privadas. Segundo, WPA se dedicaba principalmente a proyectos más pequeños junto con los gobiernos locales, como escuelas, caminos, aceras y alcantarillado, mientras que los programas de PWA comprendían puentes de gran envergadura, túneles y embalses. Ver: Leighninger, Robert D. “Cultural Infrastructure: The Legacy of New Deal Public Space”. Journal of Architectural Education, t. 49, no. 4 (mayo 1996): 226–236.

2. Carstensen, Vernon, “Patterns on the American Land,” Publius: The Journal of Federalism, t. 18, no. 4 (otoño 1988): 31–39.

3. Stilgoe, John R., Common Landscape of America, 1580 to 1845 (New Haven, CT: Yale University Press, 1983), 104.

4. El origen de esta famosa frase sobre el Destino Manifiesto en los EE.UU. se encuentra en disputa. Fred R. Shapiro, el editor de Yale Book of Quotations, comenta sobre sus orígenes en Yale Alumni Magazine (septiembre/octubre 2008); ver http://www.archives.yaleulumnimagazine.com.

5. Ver, por ejemplo, de Crèvecoeur, J. Hector St. John, Letters from an American Farmer (London, UK: T. Davies, 1782).

6. Ver Hudson, John C., Plains Country Towns (Minneapolis: University of Minnesota Press, 1985), que ganó el primer premio al libro John Brinckerhoff Jackson de la Asociación Americana de Geógrafos.

7. Merchant, Carolyn, The Columbia Guide to American Environmental History (New York, NY: Columbia University Press, 2002), 112.

8. Habermas, Jürgen, “The Uncoupling of System and Lifeworld”, en Elliott, Anthony, ed., The Blackwell Reader in Contemporary Social Theory (Oxford, UK: Wiley-Blackwell, 1999), 175.

9. Gilligan, Carol, In a Different Voice: Psychological Theory and Women’s Development (Cambridge, MA: Harvard University Press, 1982).

10. Oberstar, James L., comentarios especiales en LePatner, Barry B., Too Big to Fall: America’s Failing Infrastructure and the Way Forward (Lebanon, NH: Foster Publishing, en asociación con University Press of New England, 2010), xi.

11. Tracy, Tammy y Hugh Morris, Rail-Trails and Safe Communities: The Experience on 372 Trails (Washington, D.C.: Rails-to-Trails Conservancy, 1998); disponible en línea en http://www.railstotrails.org/resources/documents/resource_docs/Safe%20Communities_F_lr.pdf.

12. Ver http://www.infrastructurereportcard.org.

13. Ver, por ejemplo, Kolbert, Elizabeth, “The Siege of Miami”, The New Yorker (21 y 28 de diciembre, 2015): 42–46 y 49–50.

14. White, Gilbert F., “The Changing Role of Water in Arid Lands”, en Kates, Robert W. e Ian Burton, eds., Geography, Resources, and Environment: Vol. 1, Selected Writings of Gilbert F. White (Chicago, IL: University of Chicago Press, 1986), 137.

15. Ibíd.

16. Según la definición de la EPA, la infraestructura “gris” es un “sistema convencional de drenaje por tuberías y tratamiento de aguas” y una infraestructura “verde” está “diseñada para mover aguas de tormenta urbanas fuera del entorno edificado [y] reducir y tratar las aguas de tormenta en su origen, generando beneficios medioambientales, sociales y económicos”. Ver EPA, “What is Green Infrastructure”; disponible en https://www.epa.gov/green-infrastructure/what-green-infrastructure.

17. Ver, por ejemplo, Ganis, John, con ensayos por Liz Wells y James E. Hansen, America’s Endangered Coasts: Photographs from Texas to Maine (Staunton, VA: George F. Thompson Publishing, 2016).

18. Ver http://www3.epa.gov para una versión actualizada.

19. Ver Alexiou, Joseph, Gowanus: Brooklyn’s Curious Canal (New York, NY: NYU Press, 2015).

20. Para una reseña de Sponge Park, ver Foderaro, Lisa W., “Building a Park in Brooklyn to Sop up Polluted Waters: Site Will Treat Thousands of Gallons near Canal”, The New York Times (16 de diciembre de 2015): A27 y A29.

21. Ver, por ejemplo, Palazzo, Danilo y Frederick R. Steiner, Urban Ecological Design: A Process for Regenerative Place (Washington, D.C.: Island Press, 2011), 6; y “Rising Currents: Projects for New York’s Waterfront to Respond to Climate Change”, Landscape Architecture China, t. 11, no. 3 (junio 2010): 70–75.

22. El origen del movimiento de ferrocarriles a sendas fue presentado en forma brillante por Charles E. Little en su ya clásico libro Greenways for America (Baltimore, MD: The Johns Hopkins University Press, en asociación con The Center for American Places, 1990).

23. Powell, J. W., “Report on the Lands of the Arid Regions of the United States, with a More Detailed Account of the Lands of Utah” (Washington, D.C.: Government Printing Office, 2 de abril de1878), viii.

Conservación de precisión

Identificando la contaminación en la Bahía de Chesapeake con SIG de un metro de resolución
By Kathleen McCormick, Outubro 31, 2016

La Bahía de Chesapeake es un icono cultural, un tesoro nacional y un recurso natural protegido por cientos de agencias, organizaciones sin fines de lucro e instituciones. Ahora, una nueva tecnología de construcción de mapas digitales con exactitud sin precedentes, desarrollada por The Chesapeake Conservancy y respaldada por el Instituto Lincoln de Políticas de Suelo, está identificando con precisión contaminación y otras amenazas a la salud del ecosistema de la bahía y su cuenca, que abarca 165.000 km2, 16.000 km de costa y 150 ríos y arroyos importantes. Con una resolución de un metro por un metro, la tecnología de mapas de “conservación de precisión” está llamado la atención de una amplia gama de agencias e instituciones, que ven aplicaciones potenciales para una variedad de procesos de planificación en los Estados Unidos y el resto del mundo. Este nuevo juego de datos de cubierta de suelo, creado por el Centro de Innovación de Conservación (CIC) de The Conservancy, tiene 900 veces más información que los juegos de datos anteriores y brinda mucho más detalle sobre los sistemas naturales y las amenazas medioambientales a la cuenca, de las que la más persistente y urgente es la contaminación de las aguas de la bahía, que afecta desde la salud de la gente, las plantas y la vida silvestre hasta la industria pesquera, el turismo y la recreación.

“El gobierno de los EE.UU. está invirtiendo más de US$70 millones al año para limpiar la Bahía de Chesapeake, pero no sabe qué intervenciones tienen el mayor impacto”, dice George W. McCarthy, presidente y director ejecutivo del Instituto Lincoln. “Con esta tecnología podremos determinar si las intervenciones pueden interrumpir el flujo superficial de nutrientes que está provocando el florecimiento de algas en la bahía. Podremos ver dónde fluye el agua a la Bahía de Chesapeake. Podremos ver el rédito del dinero invertido, y podremos comenzar a reorientar a la Agencia de Protección Ambiental (EPA, por su sigla en inglés), el Departamento de Agricultura y múltiples agencias que quizás planifiquen en forma estratégica pero sin comunicarse entre sí”.

The Chesapeake Conservancy, una organización sin fines de lucro, está dando los toques finales a un mapa de alta resolución de toda la cuenca para el Programa de la Bahía de Chesapeake. Ambas organizaciones están ubicadas en Annapolis, Maryland, el epicentro de los esfuerzos de conservación de la bahía. El programa presta servicio a la Asociación de la Bahía de Chesapeake (Chesapeake Bay Commission), la EPA, la Comisión de la Bahía de Chesapeake y los seis estados que alimentan la cuenca: Delaware, Maryland, Nueva York, Pensilvania, Virginia, West Virginia y el Distrito de Columbia, junto con 90 contrapartes más, entre las que se cuentan organizaciones sin fines de lucro, instituciones académicas y agencias gubernamentales como la Administración Nacional Oceánica y Atmosférica, el Servicio de Peces y Vida Silvestre de los EE.UU., el Servicio Geológico de los EE.UU. (USGS) y el Departamento de Defensa de los EE.UU. 

En nombre de esta alianza, la EPA invirtió US$1,3 millones en 2016 en financiamiento estatal y federal para el proyecto de cubierta de suelo de alta resolución de The Conservancy, que se está desarrollando en conjunto con la Universidad de Vermont. La información obtenida de los diversos programas piloto de mapas de precisión ya está ayudando a los gobiernos locales y contrapartes fluviales a tomar decisiones de gestión de suelo más eficientes y económicas. 

“Hay muchos actores en la cuenca de la Bahía de Chesapeake”, dice Joel Dunn, presidente y director ejecutivo de The Chesapeake Conservancy. “La comunidad ha estado trabajando en un problema de conservación muy complicado por los últimos 40 años, y como resultado hemos creado capas y capas y muchas instituciones para resolver este problema”. 

“Ahora no es un problema de voluntad colectiva sino un problema de acción, y toda la comunidad tiene que asociarse de maneras más innovadoras para llevar la restauración de los recursos naturales de la cuenca al próximo nivel superior”, agrega.

“La tecnología de conservación está evolucionando rápidamente y puede estar llegando ahora a su cima”, dice Dunn, “y queremos montarnos sobre esa ola”. El proyecto es un ejemplo de los esfuerzos de The Conservancy para llevar su trabajo a nuevas alturas. Al introducir “big data” (datos en gran volumen) en el mundo de la planificación medioambiental, dice, The Conservancy se preparar para innovar como un “emprendedor de conservación”.

¿Qué es la tecnología de mapas de precisión?

Los datos del uso del suelo y la cubierta del suelo (LULC, por su sigla en inglés) extraídos de imágenes por satélite o desde aviones son críticos para la gestión medioambiental. Se usa para todo, desde mapas de hábitat ecológico hasta el seguimiento de tendencias de desarrollo inmobiliario. El estándar de la industria es la Base de Datos Nacional de Cubierta de Suelo (NLCD, por su sigla en inglés) de 30 m por 30 m de resolución del USGS, que proporciona imágenes que abarcan 900 m2, o casi un décimo de hectárea. Esta escala funciona bien para grandes áreas de terreno. No es suficientemente exacta, sin embargo, para proyectos de pequeña escala, porque todo lo que tenga un décimo de hectárea o menos se agrupa en un solo tipo de clasificación de suelo. Una parcela podría ser clasificada como un bosque, por ejemplo, pero ese décimo de hectárea podría tener también un arroyo y humedales. Para maximizar las mejoras en la calidad del agua y los hábitats críticos, hacen falta imágenes de mayor resolución para poder tomar decisiones a nivel de campo sobre dónde vale la pena concentrar los esfuerzos.

Con imágenes aéreas públicamente disponibles del Programa Nacional de Imágenes de Agricultura (NAIP, por su sigla en inglés), en combinación con datos de elevación del suelo de LIDAR (sigla en inglés de Detección y Medición de Distancia por Luz), The Conservancy ha creado juegos de datos tridimensionales de clasificación del suelo con 900 veces más información y un nivel de exactitud de casi el 90 por ciento, comparado con el 78 por ciento para la NLCD. Esta nueva herramienta brinda una imagen mucho más detallada de lo que está ocurriendo en el suelo, identificando puntos donde la contaminación está ingresando en los arroyos y ríos, la altura de las pendientes, y la efectividad de las mejores prácticas de gestión (Best Management Practices, o BMP), como sistemas de biofiltración, jardines de lluvia y amortiguadores forestales. 

“Podemos convertir las imágenes vírgenes en un paisaje clasificado, y estamos entrenando a la computadora para que vea lo mismo que los seres humanos al nivel del terreno”, incluso identificando plantas individuales, dice Jeff Allenby, Director de Tecnología de Conservación, quien fue contratado en 2012 para aprovechar la tecnología para estudiar, conservar y restaurar la cuenca. En 2013, una subvención de US$25.000 del Consejo de Industrias de Tecnología Informática (ITIC) permitió a Allenby comprar dos computadoras poderosas para comenzar el trabajo de trazar mapas digitales. Con el respaldo del Programa de la Bahía de Chesapeake, su equipo de ocho expertos en sistemas de información geográfica (SIG) ha creado un sistema de clasificación para la cuenca de la Bahía de Chesapeake con 12 categorías de cubierta de suelo, como superficies impermeables, humedales, vegetación de baja altura y agua. También está incorporando información de zonificación de los usos del suelo provista por el Programa de la Bahía de Chesapeake. 

El potencial de la tecnología

El trazado de mapas de precisión “tiene el potencial de transformar la manera de ver y analizar sistemas de suelo y agua en los Estados Unidos”, dice James N. Levitt, Gerente de Programas de Conservación de Suelo del Departamento de Planificación y Forma Urbana del Instituto Lincoln, que está respaldando el desarrollo tecnológico de The Conservancy con una subvención de US$50.000. “Nos ayudará a mantener la calidad del agua y los hábitats críticos, y ubicar las áreas donde las actividades de restauración pueden tener el mayor impacto sobre el mejoramiento de la calidad del agua”. Levitt dice que la tecnología permite convertir fuentes de contaminación “no puntuales”, o sea difusas e indeterminadas, en fuentes “puntuales” identificables específicas sobre el terreno. Y ofrece un gran potencial de uso en otras cuencas, como la de los sistemas de los ríos Ohio y Mississippi, los que, como la cuenca de Chesapeake, también tienen grandes cargas de escurrimiento contaminado de aguas de tormenta debido a actividades agrícolas. 

Es un momento propicio para hacer crecer la tecnología de conservación en la región de Chesapeake. En febrero de 2016, la Corte Suprema de los EE.UU. decidió no innovar en un caso que disputaba el plan de la Asociación de la Bahía de Chesapeake para restaurar plenamente la bahía y sus ríos de marea, para poder volver a nadar y pescar en ellos para 2025. Esta decisión de la Corte Suprema dejó en su lugar un dictamen de la Corte de Apelación del 3.er Circuito de los EE.UU. que confirmó el plan de aguas limpias y mayores restricciones sobre la carga máxima total diaria, o el límite de contaminación permisible de sustancias como nitrógeno y fósforo. Estos nutrientes, que se encuentran en los fertilizantes agrícolas, son los dos contaminantes principales de la bahía, y son tenidos en cuenta bajo las normas federales de calidad del agua establecidas en la Ley de Agua Limpia. El dictamen también permite a la EPA y a agencias estatales imponer multas a aquellos que contaminan y violan las reglamentaciones. 

La calidad del agua de la Bahía de Chesapeake ha mejorado desde su fase de mayor contaminación en la década de 1980. Las modernizaciones y la explotación más eficiente de las plantas de tratamiento de aguas servidas han reducido la cantidad de nitrógeno que ingresa en la bahía en un 57 por ciento, y el fósforo en un 75 por ciento. Pero los estados de la cuenca siguen violando las regulaciones de agua limpia y el aumento del desarrollo urbano exige una evaluación constante y una reducción de la contaminación en el agua y hábitats críticos.

Proyecto piloto núm. 1: El río Chester

The Conservancy completó una clasificación de suelo de alta resolución y análisis de escurrimiento de aguas de tormenta para toda la cuenca del río Chester, en la costa oriental de Maryland, con financiamiento de las Campañas de Energía Digital y Soluciones de Sostenibilidad de ITIC. Isabel Hardesty es la cuidadora del río Chester, de 100 km de largo, y trabaja con la Asociación del río Chester, con asiento en Chestertown, Maryland. (“Cuidadora de río” es el título oficial de 250 individuos en todo el mundo que son los “ojos, oídos y voz” de un cuerpo de agua.) El análisis de The Conservancy ayudó a Hardesty y su personal a comprender dónde fluye el agua a través del terreno, dónde serían más efectivos las BMP y qué corrientes fluviales degradadas sería mejor restaurar. 

Dos tercios de la cubierta del suelo en la cuenca del río Chester son cultivos en hilera. Los agricultores de estos cultivos frecuentemente usan fertilizante en forma uniforme en todo el campo, y el fertilizante se escurre con las aguas de tormenta de todo el predio. Esto se considera contaminación no puntual, lo cual hace más difícil identificar el origen exacto de los contaminantes que fluyen a un río, comparado, por ejemplo, con una pila de estiércol. El equipo de The Conservancy trazó un mapa de toda la cuenca del río Chester, identificando dónde llovió en el terreno y dónde fluyó el agua.  

“A simple vista se puede mirar un campo y ver dónde fluye el agua, pero este análisis es mucho más científico”, dice Hardesty. El mapa mostró la trayectoria del flujo de agua en toda la cuenca, en rojo, amarillo y verde. El color rojo identifica un mayor potencial de transporte de contaminantes, como las trayectorias de flujo sobre superficies impermeables. El color verde significa que el agua está filtrada, como cuando fluye a través de humedales o un amortiguador forestal, reduciendo la probabilidad de que transporte contaminantes. El amarillo es un nivel intermedio, que indica que podría ser uno u otro. El análisis se tiene que “comprobar en la realidad”, dice Hardesty, o sea que el equipo usa análisis SIG a nivel de cada granja para confirmar lo que está ocurriendo en un campo específico.  

“Somos una organización pequeña y tenemos relaciones con la mayoría de los agricultores de la zona”, dice Hardesty. “Podemos mirar una parcela de terreno y saber qué prácticas está usando el agricultor. Nos hemos comunicado con nuestros terratenientes y colaborado con ellos en sus predios; así sabemos dónde pueden entrar contaminantes a los arroyos. Cuando nos enteramos de que un agricultor en particular quiere poner un humedal en su granja, su uso del suelo y el análisis de flujo de agua nos ayuda a determinar qué tipo de BMP tenemos que usar y dónde tiene que estar ubicado”. El valor de elaborar mapas de precisión para la Asociación del Río Chester, dice Hardesty, ha sido “poder darse cuenta que el mejor lugar para colocar una solución de intercepción de agua es donde sea mejor para el agricultor. En general, esta es una parte bastante poco productiva de la granja”. Dice que en general los agricultores están contentos de poder trabajar con ellos para resolver el problema.

La Asociación del Río Chester también está desplegando tecnología para usar los recursos de modo más estratégico. La organización tiene un programa de monitorización de agua y ha recolectado datos sobre la cuenca por muchos años, que el equipo de The Conservancy ha analizado para clasificar los arroyos de acuerdo a su calidad de agua. La asociación ha hecho ahora análisis SIG que muestra los trayectos de flujo para todas las subcuencas de arroyos, y está creando un plan estratégico para guiar los esfuerzos futuros de limpieza de los arroyos con la peor calidad del agua. 

Proyecto piloto núm. 2: Herramienta de informe de BMP del Consorcio de Aguas de Tormenta del Condado de York

En 2013, The Conservancy y otras contrapartes principales lanzaron el programa Envision the Susquehanna (Vislumbrar el Susquehanna) para mejorar la integridad ecológica y cultural del paisaje y la calidad de vida a lo largo del río Susquehanna, desde su cabecera en Cooperstown, Nueva York, hasta su descarga en la Bahía de Chesapeake en Havre de Grace, Maryland. En 2015, The Conservancy seleccionó el programa para su proyecto piloto de datos en el condado de York, Pensilvania.

Pensilvania ha tenido problemas para demostrar progreso en la reducción del escurrimiento de nitrógeno y sedimento, sobre todo en los lugares donde las aguas de tormenta urbanas ingresan en los ríos y arroyos. En 2015 la EPA anunció que iba a retener US$2.9 millones de fondos federales hasta que el estado pudiera articular un plan para alcanzar sus metas. En respuesta, el Departamento de Protección Ambiental de Pensilvania publicó su Estrategia de restauración de la Bahía de Chesapeake para aumentar el financiamiento de proyectos de aguas de tormenta locales, verificar el impacto y los beneficios de BMP locales, y mejorar la contabilidad y recolección de datos para supervisar su efectividad. 

El condado de York creó el Programa de Reducción de Contaminación de la Bahía de Chesapeake – Condado de York para coordinar los informes sobre proyectos de limpieza. La tecnología de mapas de precisión de The Conservancy ofreció una oportunidad perfecta para un proyecto piloto: En la primavera de 2015, la Comisión de Planificación del Condado de York y The Conservancy comenzaron a colaborar para mejorar el proceso de selección de los proyectos de BMP para escurrimiento de aguas de tormenta urbana, que cuando se combinan con un aumento de los emprendimientos inmobiliarios, constituyen la amenaza de mayor crecimiento en la Bahía de Chesapeake. 

La comisión de planificación seleccionó el proceso de propuesta anual de BMP de 49 de las 72 municipalidades reguladas como “sistemas de alcantarillado de aguas de tormenta municipales separados”, o MS4, por su sigla en inglés. Estos son sistemas de aguas de tormenta requeridos por la Ley de Agua Limpia federal para recolectar el escurrimiento contaminado que de lo contrario fluiría a las vías fluviales locales. La meta de la comisión era normalizar el proceso de presentación y revisión de proyectos. El condado descubrió que las reducciones de carga calculadas no eran correctas en varias municipalidades, porque no contaban con el personal necesario para recolectar y analizar los datos, o usaron una variedad de fuentes de datos distintas. Por consiguiente, a la comisión le resultó difícil identificar, comparar y elaborar prioridades para identificar los proyectos más efectivos y económicos para alcanzar las metas de calidad de agua.

 


 

Cómo usar la herramienta de informe de BMP del Consorcio de Aguas de Tormenta del Condado de York

Para usar la herramienta en línea, los usuarios seleccionan un área de proyecto propuesta, y la herramienta genera automáticamente un análisis de la cubierta del suelo de alta resolución para toda el área de drenaje del proyecto. La herramienta integra estos datos de alta resolución, por lo que los usuarios pueden evaluar cómo sus proyectos podrían interactuar con el paisaje. Los usuarios también pueden comparar proyectos potenciales de manera rápida y fácil, y después revisar y presentar propuestas de proyectos con el mayor potencial para mejorar la calidad del agua. Los usuarios después pueden ingresar la información del proyecto en un modelo de reducción de carga de nutrientes/sedimentos llamado Herramienta de escenario de evaluación de instalaciones de la Bahía, o BayFAST. Los usuarios ingresan información adicional sobre el proyecto, y la herramienta inserta los datos geográficos. El resultado es un informe simple de una página en formato PDF que reseña los costos estimados del proyecto por libra de nitrógeno, fósforo y reducción de sedimento. Puede usar la herramienta en: http://chesapeakeconservancy.org/apps/yorkdrainage.

 


 

The Conservancy y la comisión de planificación colaboraron para elaborar una Herramienta de informe de BMP del Consorcio de Aguas de Tormenta del Condado de York de fácil utilización (recuadro, pág. 14), que permite comparar distintos métodos de restauración y cambio en el uso del suelo, y analizarlos antes de ponerlos en práctica. The Conservancy, la comisión y los miembros del personal municipal colaboraron sobre una plantilla uniforme de propuestas y recolección de datos, y optimizaron el proceso con los mismos juegos de datos. Después, The Conservancy capacitó a algunos profesionales SIG locales para que ellos a su vez pudieran proporcionar asistencia técnica a otras municipalidades. 

“Se puede usar en forma fácil y rápida”, explica Gary Milbrand, CFM, el ingeniero SIG y Director de Informática de la Municipalidad de York, quien proporciona asistencia técnica de proyecto a otras municipalidades. Anteriormente, dice, las municipalidades típicamente gastaban entre US$500 y US$1.000 en consultores para analizar sus datos y crear propuestas e informes. La herramienta de informe, dice, “nos ahorra tiempo y dinero”.

La comisión requirió a todas las municipalidades reguladas que presentaran sus propuestas de BMP usando la nueva tecnología para el 1 de julio de 2016, y las propuestas de financiamiento se seleccionarán a fines de este otoño. Las contrapartes dicen que las municipalidades están más involucradas en el proceso de describir cómo sus proyectos están funcionando en el entorno, y esperan ver proyectos más competitivos en el futuro. 

“Por primera vez podemos hacer una comparación cuantitativa”, dice Carly Dean, gerente de proyecto de Envision the Susquehanna. “El solo hecho de poder visualizar los datos permite que el personal municipal analice cómo interactúan sus proyectos con el terreno, y por qué el trabajo que están realizando es tan importante”. Dean agrega: “Sólo estamos empezando a escarbar la superficie. Pasará un tiempo hasta poder darnos cuenta de todas las aplicaciones potenciales”.

Integración de datos de la cubierta del suelo y el uso del suelo a nivel de parcela 

El equipo de Conservación también está trabajando para superponer datos de cubierta de suelo con los datos de condado a nivel de parcela, para proporcionar más información sobre cómo se está usando el suelo. La combinación de imágenes satelitales de alta resolución y datos del uso del suelo del condado a nivel de parcela no tiene precedentes. Los condados construyen y mantienen bases de datos a nivel de parcela en todos los Estados Unidos utilizando información como registros tributarios y de propiedad. Alrededor de 3.000 de los 3.200 condados han digitalizado estos registros públicos. Pero aun así, en muchos de estos condados los registros no se han organizado y normalizado para el uso del público, dice McCarthy.

La EPA y un equipo de USGS en Annapolis han estado combinando datos de la cubierta de suelo de un metro de resolución con datos del uso del suelo para los seis estados de Chesapeake, para brindar una vista amplia a nivel de cuenca que al mismo tiempo proporcione información detallada sobre el suelo desarrollado y rural. Este otoño, el equipo incorporará los datos del uso del suelo y la cubierta del suelo de cada ciudad y condado, y realizará ajustes para confirmar que los datos de los mapas de alta resolución coincidan con los datos a escala local. 

Los datos actualizados del uso del suelo y la cubierta del suelo se cargarán luego en el Modelo de la Cuenca de la Bahía de Chesapeake, un modelo de computadora que se encuentra actualmente en el nivel 3 de sus 4 versiones de pruebas beta de producción y revisión. Las contrapartes estatales y municipales, distritos de conservación y otras contrapartes de la cuenca han revisado cada versión y sugerido cambios en función de su experiencia de mitigación de aguas de tormenta, modernizaciones de tratamiento de aguas y otras BMP. Los datos detallarán, por ejemplo, el desarrollo de uso mixto, distintos usos del suelo agrícola para cultivos, alfalfa y pastura; y mediciones tales como la producción de fruta o verduras del suelo. Aquí es donde la conversión de la cubierta del suelo al uso del suelo es útil para ayudar a especificar las tasas de carga de contaminación.

“Queremos un proceso muy transparente”, dice Rich Batiuk de la EPA, director asociado de ciencia, análisis e implementación del Programa de la Bahía de Chesapeake, señalando que los datos combinados de la cubierta del suelo y el uso del suelo se podrán acceder en línea sin cargo. “Queremos miles de ojos sobre los datos de uso y cubierta del suelo. Queremos ayudar a las contrapartes estatales y locales con datos sobre cómo lidiar con bosques, llanuras de inundación, arroyos y ríos. Y queremos mejorar el producto para poder obtener un modelo de simulación de políticas de control de la contaminación en toda la cuenca”. 

Ampliación del trabajo y otras aplicaciones

A medida que la tecnología se refina y es utilizada más ampliamente por las contrapartes de la cuenca, The Conservancy espera poder crear otros juegos de datos, ampliar el trabajo a otras aplicaciones, y realizar actualizaciones anuales o bianuales para que los mapas sean siempre un reflejo de las condiciones reales. “Estos datos son importantes como una línea de base, y veremos cuál es la mejor manera de evaluar los cambios que se producen con el tiempo”, dice Allenby.

Las contrapartes de la cuenca están discutiendo aplicaciones adicionales para los juegos de datos de un metro de resolución, desde actualizar los mapas de emergencia/911, a proteger especies en extinción, a desarrollar servidumbres y comprar suelo para organizaciones de conservación. Más allá de la Bahía de Chesapeake, el trazado de mapas de precisión podría ayudar a realizar proyectos a escala de continente. Es el símil para la conservación de la agricultura de precisión, que permite determinar, por ejemplo, dónde se podría aplicar un poco de fertilizante para maximizar el beneficio para las plantas. Cuando se combinan estos dos elementos, la producción de alimentos puede crecer y reducir al mismo tiempo el impacto medioambiental de la agricultura. La tecnología también podría ayudar con prácticas de desarrollo más sostenible, el aumento del nivel del mar, y la resiliencia.

Mucha gente creyó que una pequeña organización sin fines de lucro no podía encarar este tipo de análisis, dice Allenby, pero su equipo pudo hacerlo por un décimo del costo estimado. El próximo paso sería poner estos datos del uso del suelo y la cubierta del suelo a disposición del público sin cargo. Pero en este momento eso sería muy oneroso. Los datos necesitan copias de respaldo, seguridad y una enorme cantidad de espacio de almacenamiento. El equipo de The Conservancy está transfiriendo los datos en colaboración con Esri, una compañía de Redlands, California, que vende herramientas de trazado de mapas por SIG, y también Microsoft Research y Hexagon Geospatial. El proceso se ejecuta en forma lineal, un metro cuadrado por vez. En un sistema que se ejecuta en la nube, se puede procesar un kilómetro cuadrado por vez y distribuir a 1.000 servidores por vez. Según Allenby, ello permitiría hacer un mapa a nivel de parcela de los 8,8 millones de kilómetros cuadrados de los EE.UU. en un mes. Sin esta tecnología, 100 personas tendrían que trabajar durante más de un año, a un costo mucho mayor, para producir el mismo juego de datos. 

Los mapas de precisión podrían aportar mucho más detalle a State of the Nation’s Land, un periódico anual en línea de bases de datos sobre el uso y la propiedad del suelo que el Instituto Lincoln está produciendo con PolicyMap. McCarthy sugiere que la tecnología podría responder a preguntas tales como: ¿Quién es el dueño de los Estados Unidos? ¿Cómo estamos usando el suelo? ¿Cómo afecta la propiedad el uso del suelo? ¿Cómo está cambiando con el tiempo? ¿Cuál es el impacto de los caminos desde el punto de vista ambiental, económico y social? ¿Qué cosas cambian después de construir un camino? ¿Cuánto suelo rico para la agricultura ha estado enterrado debajo de los emprendimientos suburbanos? ¿Cuándo comienza a tener importancia? ¿Cuánto suelo estamos despojando? ¿Qué pasa con nuestro suministro de agua?

“¿Puede resolver problemas sociales grandes?”, pregunta McCarthy. Una de las consecuencias más importantes de la tecnología de mapas de precisión sería encontrar mejores maneras de tomar decisiones sobre las prácticas del uso del suelo, dice, sobre todo en la interfaz entre la gente y el suelo, y entre el agua y el suelo. Se necesitan los registros de suelo para usar esta tecnología más eficazmente, lo cual podría presentar un desafío en algunos lugares porque no hay registros, o los que hay no son sistemáticos. Pero es una metodología y tecnología que se puede usar en otros países, dice. “Es un cambio en las reglas del juego, permitiéndonos superponer datos del uso del suelo con datos de la cobertura del suelo, lo cual puede ser increíblemente valioso para lugares de urbanización rápida, como China y África, donde los patrones y cambios se podrán observar sobre el suelo y con el correr del tiempo. Es difícil exagerar su impacto”.

“Nuestro objetivo es usar esta tecnología para aumentar la transparencia y la rendición de cuentas en todo el mundo”, dice McCarthy. “Cuanto más información puedan acceder los planificadores, mejor podrán defender nuestro planeta”. La herramienta se debería compartir con la “gente que quiere usarla con el fin apropiado, de manera que estamos haciendo la propuesta de valor de que este es un bien público que todos debemos mantener”, dice, en forma similar a cómo USGS desarrolló el sistema SIG. 

“Necesitamos la alianza pública-privada apropiada, algo así como un servicio público regulado, con supervisión y respaldo público, que se mantenga como un bien público”. 

 

Kathleen McCormick, fundadora de Fountainhead Communications, LLC, vive y trabaja en Boulder, Colorado, y escribe frecuentemente sobre comunidades sostenibles, saludables y resilientes.

Crédito: The Chesapeake Conservancy

Financiamiento municipal

Cómo verificar los bonos verdes
By Christopher Swope, Citiscope, Julho 31, 2016

Se estima que la implementación del acuerdo climático de París en todo el mundo costará más de US$12 billones en el curso de 25 años.

Así que no es de sorprender que gran parte de la conversación desde que se finalizó el acuerdo en diciembre haya sido sobre el financiamiento climático. Y uno de los grandes temas en el financiamiento climático, sobre todo entre los dirigentes municipales, es el de “bonos verdes”.

Pero, ¿qué son exactamente los bonos verdes, y por qué las autoridades locales deberían tenerlos en cuenta? He aquí una breve explicación de los factores más importantes.

¿Qué es un bono verde?

Un bono verde es un tipo de instrumento de deuda como cualquier otro bono, salvo que lo recaudado debe ser destinado a proyectos que producen un impacto ambiental positivo.

Los primeros bonos comercializados de esta manera fueron emitidos por el Banco de Inversión Europeo en 2007 y el Banco Mundial en 2008. Desde entonces, otros bancos de desarrollo, corporaciones y gobiernos se han adherido a esta tendencia. Según la Iniciativa de Bonos Climáticos, un grupo de investigación que hace un seguimiento del mercado, las emisiones totales de bonos verdes pasaron de US$3.000 millones en 2012 a alrededor de US$42.000 millones en 2015. 

Las municipalidades representan un porcentaje creciente de este mercado. Ven los bonos verdes como una herramienta para ayudar a pagar energía renovable, sistemas de transporte e infraestructura de agua, entre otras cosas.

El estado de Massachusetts, EE.UU., vendió el primer bono municipal verde en junio de 2013, seguido unos meses más tarde por la ciudad de Gotemburgo, Suecia. Otros emisores recientes de bonos fueron la ciudad de Johannesburgo; las direcciones de transporte de la Ciudad de Nueva York, Seattle y Londres; y la autoridad de aguas de Washington, DC.

¿Los bonos verdes son distintos de otros bonos municipales?

De hecho, no. El mecanismo funciona de la misma manera que otros bonos municipales. La principal diferencia es el propósito medioambiental de los bonos que la ciudad está emitiendo.

Además, los emisores de bonos verdes tienen que producir más documentación, esencialmente para demostrarles a los inversores que su dinero se está usando realmente para beneficiar el medio ambiente.

Hasta cierto punto, los bonos verdes son una herramienta de mercadotecnia. El hecho de denominar “verde” a un bono para pagar por reparaciones en el metro lo hace más atractivo para los inversores. “La verdad es que muchas ciudades están emitiendo bonos verdes; lo que pasa es que no los llaman así”, dice Jeremy Gorelick, quien enseña finanzas municipales en la Universidad Johns Hopkins de Baltimore, EE.UU.

Esto puede ser así en economías avanzadas como las de los Estados Unidos, donde un mercado de bonos municipales maduro ha estado funcionando desde hace más de un siglo. En los países en vías de desarrollo, la mayoría de las ciudades no puede emitir bonos para nada, por una variedad de razones. En muchos países, las ciudades necesitan obtener autorización legal de sus gobiernos nacionales para emitir un bono. También tienen que trabajar para hacerse merecedores al crédito.

Gorelick, quien está asesorando a la ciudad de Dakar, Senegal, para emitir su primer bono municipal, recomienda que las ciudades que se encuentran en esta situación no apunten al mercado de bonos inmediatamente. Primero les conviene pedir prestado de los gobiernos centrales o de sus fondos de desarrollo municipal antes de acercarse a las instituciones de financiamiento de desarrollo para obtener préstamos en condiciones favorables o a los bancos comerciales para tomar deuda a precios de mercado. La idea es ir construyendo un historial de crédito y los mecanismos de transparencia contable que los inversores en bonos de los mercados de capitales de deuda demandarán.

¿Por qué están tan interesadas en los bonos verdes las ciudades?

Hay muchas razones. La más importante es que los inversores realmente quieren tener bonos verdes en su cartera ahora mismo. En consecuencia, los emisores de bonos municipales han observado una “sobresuscripción” de bonos verdes, lo cual favorece a las ciudades.

Cuando Gotemburgo emitió sus primeros bonos verdes en 2013, “no sabíamos si los inversores iban a estar interesados”, dice Magnus Borelius, Jefe del Tesoro de Gotemburgo. En un plazo de 25 minutos, los inversores habían colocado órdenes por €1.250 millones –muchas veces más de lo esperado– y Gotemburgo tuvo que comenzar a declinarlas. “Nos sentimos abrumados”, dice Borelius.

Las ciudades se benefician de varias maneras cuando hay una fuerte demanda por parte de los inversores. La más importante es que pueden atraer a nuevos tipos de inversores, diversificando el grupo de personas e instituciones que tienen interés en la ciudad. “Es bueno que muchos inversores sepan que uno tiene acceso a capital”, dice Borelius. Desde la emisión de bonos verdes, agrega, “hemos aumentado el contacto con inversores; están más interesados en la ciudad y nos vienen a visitar”.

La fuerte demanda por parte de los inversores “otorga ventajas al emisor”, dice Lourdes Germán, una experta en finanzas municipales del Instituto Lincoln de Políticas de Suelo. Las autoridades locales pueden usar esta gran demanda como palanca para aumentar el tamaño de su oferta, demandar un periodo de pago mayor u obtener mejores tasas. Si bien algunas ciudades han obtenido precios favorables con los bonos verdes, Germán dice que los emisores no deberían contar con ello. “No está claro si llamar a un bono ‘verde’ resulta en mejores tasas”, dice.

¿Cómo se benefician los inversores?

Una creciente cantidad de inversores quieren que su dinero se utilice para proyectos de sostenibilidad medioambiental. Algunos están motivados por la lucha contra el cambio climático; otros simplemente están compensando por los riesgos climáticos en su cartera de inversiones.

Como consecuencia, hoy en día hay más fondos de pensión y administradores de activos privados que tienen algún tipo de mandato para “pensar verde”. Por ejemplo, el mes pasado el fondo de pensión pública sueco AP2 dijo que e staba destinando el 1 por ciento de su cartera de €32.000 millones a bonos verdes. Cuando se trata de inversores institucionales de esta envergadura, los compromisos de este tipo son significativos.

Además, los bonos municipales, por lo menos en mercados bien establecidos como en los EE.UU., se consideran una inversión segura. De manera que los bonos verdes emitidos por las ciudades son particularmente deseables. “Los inversores institucionales tienen un deber fiduciario y no invertirán en un producto que no rinda retornos”, dice Justine Leigh-Bell, administradora senior de la Iniciativa de Bonos Climáticos. “Este es un producto de grado de inversión ofrecido por emisores de alto volumen, donde el riesgo es bajo”.

¿Cómo se sabe si un bono es “verde”?

No hay reglas definitivas sobre este tema, lo cual inquieta tanto a los inversores como a los ecologistas. No obstante, el mercado de bonos verdes está evolucionando rápidamente, y están surgiendo algunas normas voluntarias para los emisores.

Una, desarrollada en gran parte por bancos grandes por medio de la Asociación Internacional de Mercados de Capitales, se llama Principios de Bonos Verdes. Otra fue desarrollada por la Iniciativa de Bonos Climáticos y se conoce como Estándar de Bonos Climáticos. El Banco Popular de China también ha publicado recientemente sus propias pautas sobre bonos verdes.

Nadie está obligado a usar estas normas, pero hay un fuerte impulso para hacerlo. “Si digo que mi camión de bomberos es ‘verde’, los inversores podrían levantar una ceja”, dice Germán. “Pero es un mercado de oferta y demanda, así que hay cierto control. Un emisor de bonos sólo recaudará ese dinero si un inversor cree que tiene realmente un propósito verde”.

Una cantidad creciente de emisores municipales está buscando opiniones independientes para certificar cuan “verdes” son sus bonos. Eso es lo que hace Gotemburgo. La ciudad sueca también ha creado un “marco de referencia de bonos verdes” para explicar a los inversores qué es lo que considera “verde” y cómo selecciona sus proyectos.

“Estamos en los primeros días de este mercado”, dice Skye d’Almeida, quien administra la red de financiamiento de infraestructura sostenible para el Grupo de Liderazgo Climático de Ciudades C40. “Es muy importante evitar cualquier escándalo de ‘lavado verde’, donde las ciudades dicen que emitieron bonos verdes y los inversores descubren más adelante que no eran verdes. Eso erosionaría la confianza en el mercado. Así que las ciudades deberían estar preparadas para que un organismo independiente verifique sus reclamos y ser muy transparentes en el uso del dinero recaudado”.

La emisión de un bono verde, ¿crea mucho trabajo o costo adicional para la ciudad?

Un poco. Leigh-Bell calcula que el costo de una revisión independiente es entre US$10.000 y US$50.000, dependiendo de quién hace la revisión y otros factores. Esto es un monto insignificante en transacciones frecuentemente valuadas en cientos de millones de dólares.

La emisión de bonos verdes puede generar trabajo adicional para el personal administrativo de la ciudad. Antes de emitir los bonos, hay que analizar los planes de inversión de capital de la ciudad para identificar proyectos que pueden calificarse como verdes. Después, hay que efectuar un seguimiento del uso de lo recaudado y reportar dicha información a los inversores. Según d’Almeida, este trabajo tiene el efecto secundario positivo de obligar a la gente a trabajar fuera de su propio silo: el personal de finanzas tiene que colaborar con el de transporte o medio ambiente, por ejemplo.

Borelius dice que este ha sido el caso en Gotemburgo. “La primera pregunta que me hace la gente sobre los bonos verdes es: ‘¿Cuánto trabajo adicional hay que hacer?’”, dice. “Si no se pone al personal de tesorería en la misma mesa con el personal de sostenibilidad, habrá mucho trabajo adicional. Pero si uno quiere emitir un bono verde, esto es lo que hay que hacer”.

El alcalde de Johannesburgo, Mpho Parks Tau, coincide que los bonos verdes han dado dividendos en el aspecto organizativo. Cuando se le preguntó recientemente si los bonos “verdes” son mayormente una estrategia de mercadotecnia, el alcalde respondió que el ejercicio ha sido útil para alinear el temario medioambiental del gobierno local como institución. “En realidad, podemos garantizar a la institución que el grueso de nuestro programa de capital se concentrará en la sostenibilidad”.

 

Christopher Swope es editor ejecutivo de Citiscope.

Crédito: Dennis Tarnay, Jr. / Alamy

Este artículo apareció originalmente en Citiscope.org. Citiscope es una organización periodística sin fines de lucro que cubre innovaciones en ciudades alrededor del mundo. Puede obtener más información en Citiscope.org.

WPA 2.0

Beauty, Economics, Politics, and the Creation of New Public Infrastructure
By Susannah Drake, Outubro 12, 2016

This feature is adapted from Nature and Cities: The Ecological Imperative in Urban Design and Planning, edited by Frederick R. Steiner, George F. Thompson, and Armando Carbonell (Lincoln Institute of Land Policy, November 2016).

During the past 400 years, the land known as the United States of America has been transformed by massive public and private works projects and technological innovations intended to facilitate commerce, improve public health, and foster economic development. While these projects generated tremendous wealth for the nation, the gains were often to the detriment of the environment. The global realities of climate change—in combination with growing urbanization and associated poverty—have raised awareness of the ecological impact of such infrastructure. Americans are now at a unique moment in history when politics, economics, ecology, and culture (design) can all be part of a new movement. We need a WPA 2.0.

The WPA is the Works Progress Administration (1935–1943)—the largest and most ambitious program of U.S. President Franklin D. Roosevelt’s New Deal during the Great Depression. Much of the present-day infrastructure in the United States was built by either the WPA or the similarly named PWA (Public Works Administration). Almost every city, town, and community in America benefited from a new WPA- or PWA-built airport, bridge, dam, park, road, school, or other public building.1

Let me now reflect, albeit briefly, on the history of public works projects in the United States to discern where the world’s richest nation is, today, in terms of its urban infrastructure. This will allow a glimpse into how landscape architects, architects, and planners are addressing the needs and opportunities that face not only American cities, but communities and cities throughout the world as they confront the pressing realities of global climate change.

Canals and Harbors

Early settlement in the United States showed patterns of towns and cities directly related to water resources. Navigable waterways, safe harbors, and access to fresh water for fire prevention, sanitation, power production, farming, and drinking were central to the development of major commercial centers. Construction of the Erie Canal (1817–1825), for example, made New York the financial capital of the world during the nineteenth century by opening up critical supply lines for timber, furs, minerals, and agricultural products that helped the North win the American Civil War (1861–1865). Since then, we have seen the gradual decoupling of urban transportation systems from the physical environment in the United States.

The Grid

Looking back to nineteenth-century America, ideals of Manifest Destiny and the agrarian myth fueled a need to organize and cultivate the nation’s western frontiers. The Land Ordinance Act of 1785 was a resolution written by Thomas Jefferson (1743–1826), then a delegate from Virginia, to create a federal system for the survey and sale of federally owned land west of the Appalachian Mountains, intended to fund the federal government at a time when the government could not raise fiscal resources through taxation.2 It was then that an uncoupling of environmental and development systems started to take place on a large scale: The public land survey system parceled land into gridded territories, townships, and sections without regard to the geomorphology or carrying capacity of the property. Territories (24 x 24 miles; 38.624 x 38.624 kilometers), townships (6 x 6 miles; 9.656 x 9.656 kilometers), and sections (1 x 1 mile; 1.609 x 1.069 kilometers) were numbered and organized boustrophedonically, an alternating pattern from the top right to the bottom left quadrant of a square, similar to the path a farmer might follow when plowing a field.3

Agriculture, Railroads, and the Grid

When Horace Greeley (1811–1872), the famous editor of The New York Herald Tribune, purportedly declared in an editorial (13 July, 1865), “Go West, young man, go West and grow up with the country,” he rallied the nation.4 Greeley was responding, in part, to the Homestead Act of 1862, which enabled veterans, freed slaves, and even women to file a claim to a half-section of land (640 acres; 260 hectares) if they agreed to live on it and improve it for five years, further promoting agrarian values that were part of an American nationalism, which developed during a time of rapid industrialization. Manifest Destiny and agrarian culture, as characterized decades earlier by de Crèvecoeur (1735–1813) in numerous books, mythologized farming, espousing rural life as the foundation of character.5 However, the gridding of America and subsequent development of national rail lines—enabled by government grants of more than 300 million acres (121,405,693 hectares) to rail companies—were not reliant on natural systems for their development; instead, both worked in opposition to the waterways and topography they encountered, some of them extreme.

Supremacy over the landscape had its limits. While rail lines could be drawn to previously inaccessible corners of the country, facilitating commerce, they required long, gradual grade change and abundant clean water to function, limiting universal access. Farms and towns located themselves on and near new rail lines, but land in more arid climates west of the 100th meridian did not have the carrying capacity characteristic of Thomas Jefferson’s Virginia.6 Parcels of half-sections needed to be combined and annexed to enable productive use for timber or cattle grazing, uses that have their own heavy impacts on indigenous landscapes. The scale of operations moved toward a more standardized practice, away from the ideals of the rural farm. Western settlers and transcendentalists alike thought nothing of the consequences of introducing nonnative plant communities to the detriment of the indigenous environment.

A hallmark of the Industrial Revolution in the United States was the first transcontinental linking of rail lines—the Union and Central Pacific Railroads at Promontory Summit in Utah Territory near present-day Brigham City—on 10 May, 1869. Infrastructure tied to natural systems for the first two and a half centuries of the nation’s development could now follow a much more flexible path. By 1910, there was a network of more than 250,000 miles (402,336 kilometers) of rail covering the United States. Coeval with this infrastructural growth, the nation’s waterways transitioned from being critical economic lifelines to convenient disposal sites. As Carolyn Merchant has observed, “In the United States, industrial chemicals and wastes, including sulfuric acid, soda ash, muriatic acid, limes, dyes, wood pulp, and animal byproducts from industrial mills contaminated waters in the Northeast.”7 Ongoing pollution of rivers, canals, and ports still leaves neighboring communities managing the consequences of years of environmental abuses, despite the benefits of the 1972 Clean Water Act.

As natural systems became less important for access, they remained critical for raw materials. The relationship between water rights and rail lines, for instance, was critical not only because clean water was necessary to power steam engines, but also because the relationship between agriculture and rail transport systems opened up new areas of the country for the development and trade of commodities such as corn and wheat, legacy crops to this day.

Combined Sewers

When English plumber Thomas Crapper (1836–1910) popularized the use of the flush toilet during the 1860s, he surely had no idea of the potential future impact upon municipal watermanagement systems. His work triggered a cascade of events leading to the degradation of global waterways 150 years later. Rapid urbanization in the United States during the nineteenth century created the need for collective management of sanitary waste. In search of innovation, the United States looked to Europe, where a new form of infrastructure—the combined sewer—was developed to manage increased sanitary waste coming from more flush toilets. Combined sewer overflows (CSOs) release a witch’s brew of surface-water runoff and sanitary sewage into neighboring waterways when there is too much effluent for treatment plants to manage. Today, New York City, like 772 U.S. cities, has a combined sewer system where—in even a light rain—sanitary and storm wastes combine, releasing excrement, prophylactics, oil, pesticides, and heavy metals into New York’s harbor and rivers.

Around the world the combined sewers that unite sewage and stormwater in a common pipe—once a transformative infrastructure solution—have reached their limit. Growing urban populations and increased impermeable surfaces perpetually overload the sewage-treatment systems in cities globally. With sewage ever more frequently overflowing into waterways and a rise in sea level further compromising the outfall systems, policy makers and even private funders need to empower designers to rethink the design and management of urban stormwater and sanitary water systems. More severe and frequent storms resulting from global climate change will increasingly affect the hardened, postindustrial waterfront. Innovative urban design that can dissipate the forces of storm surge, manage flooding, reduce surface-water runoff, and reduce a heat-island effect need to be worked into an adaptation plan for waterfront cities. Without major changes to technology, the natural and human resource management of global health and productivity will be compromised.

The New Deal

Beginning in 1933, during the depths of the Great Depression, political leaders in the United States put forward programs under the New Deal that offered targeted relief for the massive number of unemployed and poor Americans, gradual recovery in the economic sector, and reform of the financial system. Significantly, New Deal programs also transformed the nation’s critical infrastructure. Roads, water-management structures, and pathways for electrification provided access, sanitation, and power to formerly undeveloped areas of the country. Parks, public buildings, bridges, airports, and other civic projects followed. Under President Franklin D. Roosevelt, the WPA employed millions of unemployed people, including women and minorities, constructing a renewed cultural identity for the nation.

A hallmark of the New Deal programs—valued at $20 billion (more than $347 billion at current value)—was the work of artists, writers, landscape architects, architects, and other creative professionals who helped shape the look and cultural literacy of the country during the twentieth century. Legions of laborers guided by designers and bureaucrats worked locally with a regional palette of materials to create extraordinarily beautiful yet practical work that reflected national pride and civic awareness. The work was modern and aspirational and showcased indigenous character and material. President Roosevelt understood the need for large-scale government action to help get the country back on its feet and headed in a new direction.

The Federal Highway System

Two decades later, in the aftermath of World War II and the Korean War, President Dwight D. Eisenhower signed the Federal-Aid Highway Act of 1956 into law. Also known as the National Interstate Defense Highways Act, the transcontinental highway system was presented to the public as essential to national defense systems and was funded at a cost of $25 billion through a tax on gasoline and diesel fuel. The term “infrastructure,” which developed during World War II to describe military logistical operations, became one of the president’s most visible and longlasting initiatives in the form of the U.S. interstate highway system. Eisenhower, the five-star general and supreme commander of Allied forces in Europe during the war, admired the efficiency of the German autobahns and sought to create a similar system in the United States. The unified design standards for the nation, consistent with the tenets of modernism, suggested the potential of technology to overcome geophysical obstacles in the landscape with hard engineering. The project catalyzed the development of sprawling new mega-regions of the late twentieth century.

Uncoupling

The sociologist and philosopher Jürgen Habermas (b. 1929), in his 1999 essay “The Uncoupling of System and Lifeworld,” suggested that the processes of differentiation and specialization inherent to modernism are undemocratic and that a democratic system of leadership in advanced capitalistic societies such as the United States enables decision making that is unreflective of society’s broader voice:

But political domination has socially integrating power insofar as disposition over means of sanction does not rest on naked repression, but on the authority of an office anchored in turn to legal order. For this reason, laws need to be inter-subjectively recognized by citizens; they have to be legitimated as right and proper. This leaves culture with the task of supplying the reasons why an existing political order deserves to be recognized.8

Through a democratic system, leaders are empowered to make massive decisions about the shape of their country with what I might characterize as “blind faith” in paternalistic power, which, when coupled with postwar fear and fatigue, is further enhanced. Technology reigned in the post–World War II period, and American culture was such that an uncoupling of the systems (such as interstate highways) from the life-world (the social and physical environment)—when presented by a war hero turned president—carried the necessary balance of paternalism and idealism to enable political support for the largest public works project in U.S. history.

As repressed groups, stifled by modernism’s systems-based approaches, found voice in the later twentieth century, the need for “different voices” (to borrow Carol Gilligan’s term) infused culture.9 The women’s movement, civil rights movement, and modern environmental movement each lent local and personal voices against the unsupportable rationality of current power structures. For the environmental movement, this contributed to important legislation such as the Clean Air Act of 1963 and the Clean Water Act of 1972.

The Problem

Many of the projects completed during the New Deal era are at the end of their lifespan. As James L. Oberstar has concluded:

Nearly sixty years after much of the interstate highway system was constructed in the 1950s and 1960s, we are now seeing many facilities become stretched to the limit of their design life and beyond. The world-class surface transportation system passed on by previous generations of Americans has reached the age of obsolescence and now needs to be rebuilt.10

Many canals and harbors are no longer used for commerce with the same intensity they once were, and they are, in many cases, decayed, underutilized, polluted, and subject to rising sea level and storm surge. Less than half of the original 300,000 miles (482,803 kilometers) of rail corridors across the United States are still in use for rail.11 America’s 772 cities have combined sewers that still dump significant amounts of sewage effluent into waterways. Highways and bridges are in similarly poor condition. The repair and replacement of these monumental infrastructure systems in their current configurations do not reflect social, environmental, and technological advances that have occurred during the last half century.

Every four years, the American Society of Civil Engineers issues a report card on America’s infrastructure. Here are the grades given in 2013 and 2009:

Categories 2013 2009

Aviation/Airports

D D
Bridges C+ D
Dams D D
Drinking Water D D-
Energy D+ D+
Hazardous Waste D D
Inland Waterways D- D-
Levees D D-
Ports C (N.A.)
Public Parks and Recreation C- C-
Rail C+ C-
Roads D D-
Schools D D
Solid Waste B- C+
Transit D D
Wastewater D D-
Overall Grade D+ D

D = Poor; C = Mediocre; B = Good.12

An unprecedented combination of deeply troubling environmental problems, political evolution, and new design and technology now present an unparalleled opportunity to improve America’s infrastructure. Given the realities of global climate change and increased urbanization and population growth, interdisciplinary teams of thinkers must develop models of urban design that work with the hydrologic, transportation, ecologic, economic, and cultural systems that will make cities better-performing and more compelling places to work, live, and raise families. It is unclear whether this work will be driven primarily by the federal government, as it is in France or the Netherlands, or through the public-private partnership models common in the United States. The crucial role of design in the public realm is undervalued and attitudes need to change.

Understanding how physical geography, ecology, and climate function is critical to the development of new types of infrastructure that are more responsive to the forces of nature. The idea of using natural systems to provide public amenities and health benefits is not new. Frederick Law Olmsted (1822–1903), for example, used tidal flows to reduce pestilence and pollution in his design and plan for the Back Bay Fens of Boston during the late 1880s. With advances in technology in the aftermath of the Industrial Revolution, engineered solutions were seen as superior to historical precedent. Viewing infrastructure as a machine was the answer. As we observed in the aftermath of Hurricanes Katrina (2005), Irene (2011), and Sandy (2012), engineered systems are inflexible and can fail with catastrophic consequences as the severity, frequency, and intensity of storm events increase.

It is time to rethink the nineteenth- and twentieth-century engineering model and consider options that can again work in concert with the natural environment. Roads were traditionally aligned with rivers in many rural areas because they were cheaper to build, but roads and bridges in Vermont were destroyed in minutes by the flood-swollen rivers during Hurricane Irene. In metropolitan New York, highways, train yards, tunnels, and public housing located in floodplains along the postindustrial waterfront, where the land was cheap, were severely flooded during Hurricane Sandy in 2012. Replacement of New Jersey’s PATH trains and rebuilding of flooded tunnels and other public and private property in areas subject to more frequent inundation is costing taxpayers hundreds of millions of dollars a year when states of emergency are declared so frequently. Miami sits on a permeable bed of limestone at the interface of saltwater and freshwater and faces frequent hurricanes and flooding from upland and coastal sources that threaten not only its major industry—tourism—but also the ecological health of the Everglades.13

In many cities across the United States, combined sewer systems were an economical solution to sanitary engineering until climate change and population growth changed the balance sheet. Today, designers and public officials often look to Europe for water-management technology. American municipalities first looked at examples of combined sewers in France and Germany, and they now look to the Dutch for flood control. The Netherlands translates literally to “low lands,” and its strategy of planning includes 200 years into the future (long term), while constantly reconstructing dikes, dams, and polders (short term) is seen as necessary to protect not only the built environment, but also the agricultural economy dependent on sweet water (the Dutch term for fresh nonsaline water). In the United States, municipalities need to look further to the future and realize there are real opportunities to develop new innovations based on the nation’s geographic diversity. The prominent American geographer Gilbert F. White (1911–2006), in addressing the 1934 national flood-control policy, suggested that the multi-billion-dollar program to build reservoirs, canals, levees, and deeper river channels did not reduce flood losses decades later. In his words:

By assuming that only engineering works were needed to curb the cost of unruly streams, other possibly effective means were neglected. Little or no attention was paid to such alternatives as land use regulation or flood-proofing of buildings. By assuming the engineering works would do what the benefit-cost calculations had solemnly estimated they would do, without attempting to verify the practical results in land use, the public reaped quite different effects.14

America’s reliance on water-management structures thus provides a false sense of security in relation to availability, cost, and protection from catastrophic flooding. White suggested further that the “single purpose levee may set a confident scene for later catastrophe; a single-purpose reservoir may appropriate a unique dam site without assuring complete reduction in flood losses.”15 In many of White’s essays—written over a period of 60 years as a professor of geography and esteemed government advisor on natural hazards and flooding—he advocated a more holistic approach to design and planning and a testing of applied technology to gauge effectiveness.

Solutions

We know that gradual, buffered waterfront edges and barrier islands can dissipate wave energy, contain saltwater inundation, and make habitat that also helps to sequester carbon. The function of barrier reefs, salt marshes, and cypress swamps can thus inspire new models for an ecosystem’s management. Planning and designing for the periodic swells of rivers and streams may well necessitate an incentivized plan such as Zone (A)ir to relocate homes, towns, roads, communities, and businesses. It is critical that we adapt the architecture (buildings) and landscape architecture (infrastructure and outdoor space) by rethinking the porosity of the landscape, the materials of construction, the relocation of mechanical systems, and access. To the point: Our roads can soak up water, our highway trenches can be covered with parks that clean the air and provide recreational space, our waters’ edges can have an alternating combination of hard edges to facilitate commerce and softer edges to protect valuable upland real estate. Key to all of this thinking is the interface between human occupation and the environment.

The beginnings of this work in ecological design and planning are already apparent in Chicago, Philadelphia, and Portland, Oregon, where sidewalk swales and porous paving are becoming part of the standard streetscape. New York City is also taking on pilot projects to test the effectiveness of new materials and ideas, but testing takes time when action is needed. In floodplains along the Mississippi River, communities with low populations are being relocated and spillways opened to flood farmlands so that population centers downstream are safer. We cannot contain the force of water, as we once believed. Long-term, large-scale planning and actions that reduce our impact on the land, work in concert with natural systems, and enable new systems of exchange are necessary if we are to lessen the impacts of nature’s force.

Gilbert White long ago suggested a holistic and integrated regional approach to sound water management, but his voice fell on deaf ears, as single-purpose engineering solutions to local problems were constructed without consideration of watersheds and “sewersheds.” As towns and cities now work to manage aging infrastructure that is unable to handle impacts of more frequent storms and a rising sea, they have a huge opportunity to embrace new thinking and technology that, more than four decades after the federal Clean Water Act became law, will ameliorate day-to-day and storm-related wastewater loads with new and holistic gray/green engineered approaches.16 The costs of new infrastructure are real: Presently, approximately $95 billion will be needed to mitigate combined sewer overflows to bring cities in compliance with the 1972 law. Simultaneously, hundreds of billions will be needed to protect communities and cities against future flooding. Resources to address these issues should be combined for cost-effectiveness and efficiency.

Expansion of new green infrastructure networks—where hard surfaces are removed, utilities are protected, and stormwater is channeled for the irrigation of public parks, gardens, and wetlands—can also help mitigate and absorb floodwaters. Green (nature-based) infrastructure systems allow us to rethink not only the overarching functions of infrastructure, but also our experience of nature in the city. Municipalities have an opportunity to design and plan in the most comprehensive and cost-effective manner. The survival of towns and cities that currently exist at or just above sea level depends on aggressive, widespread rethinking of infrastructure for resilience to climate change and destructive storms. As we know, even if all 196 nations honor the commitments each made in Paris, in December 2015, to mitigate the effects of climate change, the global sea levels will rise at least 3 to 4 feet (0.914 to 1.219 meters) within a century, and all areas along the world’s coasts with elevations under 15 feet (4.572 meters) are extremely vulnerable to high tides and storm surge.17

WPA 2.0: A New Natural Infrastructure System

In response to the 285 deaths and widespread devastation (more than $50 billion in damage) caused by Hurricane Sandy (2012), three levels of U.S. government—federal, state, and local— established commissions, task forces, special initiatives, white papers, 12-point plans, plenary panels, and waterfront revitalization programs, all with vaguely military overtones that would convey action and strength. But will anything come of their recommendations? How can their ambitious designs and plans for modifications and improvements to make our city, state, and national infrastructure resilient to regular and extreme weather impacts be financed? To mitigate and counter the effects of an aging and ill-equipped infrastructure, to prepare now for global climate change, and to finance a new resilient defense network, I propose WPA 2.0 as a timely and much-needed solution.

The new infrastructure needed to adapt the nation’s cities, communities, and rural countryside to the realities of flooding and global climate change will require reconstruction on a massive scale of both gray and green infrastructure systems. Traditional, inflexible “gray” engineering approaches—which require waterproofing of transit systems, tunnels, and utilities or redirecting water with levees, dikes, and barriers—will work better in tandem with more resilient, ecological “green” approaches, including using currents and wind to distribute sediment for new barrier islands, reusing dredge materials to create shallows for wetlands, redesigning streets to absorb and filter stormwater, propagating a range of aquatic plants to make an ecologically rich buffer to storm surge, expanding natural flood zones (and buying out the people and businesses in them) that also function as parks most of the time, taking stormwater from highways and capturing sheet runoff in sponge parks, among other stormwater-capture systems.

As noted earlier, during the Great Depression, President Franklin D. Roosevelt’s New Deal programs brought sturdy, high-quality, and beautiful designs to public infrastructure with a national expenditure of $20 billion at a time when the gross domestic product was only $73 billion. The programs created millions of jobs, helped to restore economic stability, and offered financial reform to a flawed banking system. The Tennessee Valley Authority (TVA) was the largest New Deal enterprise. It was formed to harness and manage waterways of the Tennessee River watershed in seven states, create a public utility, and direct numerous resources to an impoverished region of the nation. Along with water management to prevent annual flooding and to manage navigation, President Roosevelt’s signing of the TVA Act created dams for the production and delivery of lower-cost electricity in an era when private utility companies were seen to be exploiting already financially stressed customers. And while the TVA was an electric utility that harnessed the power of water to deliver power, by the 1950s it added coal-burning power plants and, by the 1970s, nuclear power plants to deliver more power to meet growing demands. Energy production is at the root of global warming.

The need for greater urban climate resilience is a consequence of global warming, and emissions from combustion are a primary source. According to the U.S. Environmental Protection Agency (EPA), created in 1970 by executive order of President Richard M. Nixon, power plants, refineries, and chemical manufacturing accounted for almost 84 percent of total reported emissions of carbon dioxide, methane, nitrous oxide, and fluorinated gases in 2013.18 A modest tax on the companies that are responsible for the majority of climate-affecting pollution, including electric utilities, auto companies, oil companies, and other industrial polluters, could yield revenues necessary to create a Natural Defense Fund and finance a plan for climate change–resilient infrastructure for the next century. The idea of taxing carbon is not new. A tax on the largest carbon emitters and water polluters could bankroll a fund dedicated to urban and rural climate resilience. And the corporations can afford it: Even with energy prices at historic lows, the 10 largest power utility companies, for example, reported sales of more than $17 billion in 2014, and in the Fortune 500 list the top 10 oil refining companies alone had profits of nearly $67 billion in 2015.

In 2014, the U.S. government authorized nearly $50 billion to repair the damages from Hurricane Sandy. Although no monies were created for new defense systems, President Barack Obama included $1 billion in his 2015 budget for a climate-resilience fund. This was a good start. In fiscal year 2015, the Federal Highway Budget included $48.6 billion for repairs of an infrastructure system nearing the end of its designed lifespan. In the next two decades, cities across the country will need to spend at least $100 billion to clean up stormwater runoff and to reduce combined sewer overflows (CSOs) to comply with the Clean Water Act of 1972. It is unlikely that either local communities or the federal government will come up with the funds needed from taxpayers. Thus, by applying a minor tax on the industries whose practices have led to global climate change, a Natural Defense Fund can be created. If a related Natural Infrastructure System had the funding equivalent to the WPA of the New Deal, there would be a level of funding for resilient public works for the next century and beyond that would actually make a difference. As with the efforts to fight wars or help the nation recover from the Great Depression, a major program of renewal and development of the nation’s infrastructure will ensure the survival of cities, towns, and rural areas and lead to tens of thousands of permanent jobs in the public and private sectors, in the design, building, and maintenance of a new infrastructure for stormwater alone.

In 2005, I founded DLANDstudio, an interdisciplinary design firm based in Brooklyn, New York, where we have been developing systematic interventions and adaptations of urban infrastructure that address many of the issues described above. The work, funded with a combination of grants and public funding, involves pilot projects that are relatively small in relation to the enormity of the problem. The idea behind them is to find small pilots that, when applied on a broad scale, can have a large impact. Our projects are mostly in New York, but our planning stretches around the world. One of our most important projects is the Gowanus Canal Sponge Park, which operates to absorb, hold, clean, and filter surface water in one of the most polluted bodies of water in the United States.

Gowanus Canal Sponge Park

The Gowanus neighborhood of Brooklyn, New York, has a rich history. Originally a large marshy wetland, the area was the site of early Dutch settlement, important Revolutionary War battles, and industry, including the energy and construction sectors. In recent decades, the canal has been better known for the lingering effects of industrial pollution and municipal waste.19

Planners today envision the area as a new site for large residential development, a controversial proposal in the face of projections of a rising sea level from climate change. In this context, working closely with local community organizations, government agencies, and elected officials, DLANDstudio initiated and designed a new kind of public open space called Sponge Park™.20

In New York City, 0.10 inch (2.54 millimeters) of precipitation (especially rain) triggers a combined sewer overflow. The Hudson and East rivers, New Town Creek, Long Island Sound, Jamaica Bay, and Gowanus Canal are some of the key bodies of water impacted by these spills. Sponge Park™ redirects, holds, and treats stormwater runoff to minimize the volume of overflows that occur within the Gowanus Canal, and it serves as a model for similar street-ends that sheet-drain into canals, rivers, and other bodies of water in cities everywhere.

The Sponge Park™ design equally values the aesthetic, programmatic, and productive importance of treating contaminated water flowing into the Gowanus Canal, an EPA Superfund site. The park is designed as a working landscape that improves the environment of the canal over time. This innovative plan proposes modular strategies to divert stormwater runoff for use in the public park along the canal, thereby reducing the input of stormwater into the sewer system. The plants and engineered soils included in our design draw heavy metals and toxins out of contaminated water.

While most urban infrastructure projects have their challenges, the Sponge Park project had to confront not only geomorphic layers, but also layers of bureaucracy. We had to work with no fewer than nine different federal, state, and city agencies, each with overlapping ownership and regulatory oversight. As part of our creative response to those challenges,DLANDstudio raised all of the design and construction funding for the project from the New York State Council on the Arts, U.S. Congress, New York City Council, New England Water Pollution Control Commission, New York State Department of Environmental Conservation, and New York State Environmental Facilities Corporation. Through the use of grant funding, we were able to innovate in a way that would be impossible through normal procurement procedures. Because the project was seen as a pilot and was led by an outside entity but with the cooperation of government, we were able to create an innovative and replicable system. The first street-end absorbs 2 million gallons of stormwater per year. If Sponge Parks were built on every street-end in New York’s five boroughs, upward of 270 million gallons of water would be absorbed and cleaned before entering New York Harbor.

Hold System

Highway Overpass Landscape Detention Systems, or HOLD Systems, collect and filter stormwater from highway downspouts. HOLD Systems are planted, modular, green infrastructure systems that absorb and filter pollutants such as oil, heavy metals, and grease out of contaminated outfalls, rendering runoff much cleaner as it is released into drains and waterways. The system’s ability to retain water during heavy rain also improves the water quality of adjacent bodies of water. Plant palettes selected for each site help to break down or absorb copper, lead, cadmium, hydrocarbons, zinc, and iron commonly found in runoff. Specially calibrated soils maximize plant productivity and create the ideal level of drainage for citywide stormwater management needs.

HOLD Systems are designed for easy transport and deployment, and they can be quickly and easily installed in hard-to-reach, hard-to-drain areas along interstate highways. HOLD Systems can remediate the impact that a highway infrastructure makes on the hydrologic cycle of neighboring areas. Three modular systems—two in the ground and one above ground—have already been developed by DLANDstudio to adapt to water-table height, permeability, site toxicity, and the availability of sun. These systems are currently being deployed in three locations in New York City—two in Flushing Meadows–Corona Park under the Van Wyck Expressway and one in the Bronx under the Major Deegan Expressway—with funding and other support from the New York City Department of Environmental Protection, Long Island Sound Futures Fund, and the National Oceanic and Atmospheric Administration.

MoMA: “A New Urban Ground”

“A New Urban Ground” was developed by DLANDstudio with ARO (Architecture Research Office) of New York City, as part of the Museum of Modern Art’s (MoMA) “Rising Currents” exhibition in 2010. In the proposal, we offered an integrated and reciprocal organization of natural and hard-infrastructure systems. A combination of strategies—including wetlands on the perimeter, a raised edge, and sponge slips (water-management landscapes in old boat slips)—were paired with new street infrastructure systems away from the water’s edge in order to protect Lower Manhattan from flooding in the event of another large storm such as Hurricane Sandy, which was but a Category One hurricane when it hit the New Jersey, New York, and Connecticut shores.

The proposal consists of two components that form an interconnected system: porous green streets and a graduated edge. Porous streets will absorb typical rain events and help keep surface water out of the city’s combined sewer system. In larger storms, the streets filter and carry water to new perimeter wetlands to enrich coastal ecologies.

Three interrelated, high-performance systems are constructed on the Atlantic Coast to mitigate the expected rise in sea level and the force of a storm surge: a park network, freshwater wetlands, and brackish marshes. “A New Urban Ground” offers a new way for urban design and planning that brings together natural ecologies with engineered infrastructure systems to transform the city in both performance and experience. This plan, which was proposed almost two years before Hurricane Sandy flooded Lower Manhattan, Staten Island, Red Hook, and the Rockaways, has been cited internationally as a viable model for new civic approaches in resilience to storm surge and sea level rise.21

BQGreen

Highway infrastructure systems across the United States are designed for one primary purpose: to move people and goods quickly from one place to another. But, as a society, it is time to rethink this singular, limited view and consider how infrastructure systems can also become productive corridors of beauty, culture, ecology, and recreation. The BQGreen project considers one such corridor—the Brooklyn-Queens Expressway (BQE)—and examines in depth two sites along its 11.7-mile (18.829-kilometer) length.

The BQE was originally proposed by the Regional Plan Association during the mid-1930s to relieve traffic congestion, facilitate industrial development, and strengthen the connection between the boroughs of New York City. The BQE differed from the city’s other parkways by accommodating both commercial and noncommercial traffic. City planner Robert Moses (1888–1981), as the chairman of the Triborough Bridge and Tunnel Authority, charted its path from the Brooklyn Battery Tunnel near Red Hook to Grand Central Parkway in Queens. Construction of the BQE left a trail of divided neighborhoods in its wake.

We know from examples such as Riverside Park (1875 and 1937) in Manhattan, a hybrid Olmsted- and Moses-era park constructed on a concrete box over a major rail corridor, that it is possible to layer transportation with extraordinary public parks. Density is an urban concept that is tied to economics. As the land that infrastructure systems occupy becomes more valuable, it makes sense to layer. As environmental impacts and benefits begin to be assessed in economic terms, the value of making significant alterations to our roadways becomes more attractive at a time when America’s highway infrastructure is near the end of its lifespan and in need of significant repair. As these old systems are replaced, why not reexamine them and consider how they might serve economic, ecological, recreational, public health, and pedestrian-friendly circulation needs in addition to transportation?

Since 2005, DLANDstudio has examined two sunken sections of the BQE. The project began on a theoretical level with a grant from the New York State Council on the Arts to look at tiny Cobble Hill and Carroll Gardens before expanding to study a very different neighborhood in SouthSide Williamsburg, with funding from then City Councilwoman Diana Reyna. The latter study went into great detail about the economic, social, and public health consequences of adding a park to the impoverished neighborhood. Extensive community outreach included visits to neighboring playgrounds, church events, and performances to make sure we recognized the voice of the community. Data were developed regarding the financial feasibility of capping costs—including ventilation and structural costs—as well as analysis of job creation, real estate value, and even the bump in retail sales at neighboring bodegas. We studied public health issues and discovered very high asthma and obesity rates as well as a relative dearth of open recreational space for kids in the vulnerable preadolescent stage. We discovered gang territories defined by the trench and imagined blurring the boundaries with new soccer and baseball fields. We helped the community to dream and then engaged the agencies to help fulfill that vision, with formal support for the proposal from New York City’s Departments of Transportation, Environmental Protection, and Parks and Recreation. Outreach to Congressional Representative Nydia Velázquez and U.S. Senator Kirsten Gillibrand also yielded positive support. To realize this vision will take the collaboration of city, state, and federal agencies; through the master plan we are making a strong argument for why this is the right project for all to support, as we work to make our communities and cities more efficient, livable, and environmentally productive.

The insertion of quality open space has the capacity not only to improve the aesthetics of neighborhoods, but also to serve as a catalyst for ecological and economic improvements to the urban environment. This project establishes a vision of the BQE as a place of opportunity where new open space can be created by introducing an environmental and recreational corridor and turning a former eyesore into a public amenity.

QueensWay

Already, 20,000 miles (32,187 kilometers) of abandoned rail corridors have been turned into bicycle and pedestrian greenways across the United States.22 The QueensWay Vision Plan, commissioned by the Trust for Public Land (TPL), a nonprofit organization founded in 1972, is one of TPL’s several current national initiatives to transform former rights-of-way in cities into active and engaging community greenways. The project involves the conversion of a former Long Island Rail Road line into a new open-space corridor for the public.

The history of land development in Queens is largely defined by the numerous rail lines that subdivided open tracts of land during the late nineteenth and early twentieth centuries. The QueensWay appropriates one of these infrastructural lineaments to opposite effect, as a unifying device. Each of the three main segments of the QueensWay—northern, central, and southern—possesses a distinct physical character that creates unique staging opportunities for the interaction of urban and natural space. Along its 3.5-mile (5.633-kilometer) length, the former right-of-way transforms from an elevated embankment to a ravine to an elevated steel viaduct. The adjacencies along the QueensWay also vary, with Little League baseball fields along the northernmost end; big-box-store parking lots, residential neighborhoods, and a public park in the middle; and crossing train lines, commercial corridors, and parking lots to the south. Issues such as safety, security, and the privacy of adjacent properties are directly tied to how the former railway line moves through the urban landscape. A quiet presence in the city, camouflaged by school-bus parking, overgrown vines, light industry, and limited access, the QueensWay has the potential to be a beautiful recreational and ecological amenity for the community.

The Future

John Wesley Powell (1834–1902)—among America’s greatest geologists, scientific surveyors, and explorers—in his famous 1878 “Report on the Lands of the Arid Region of the United States,” called for a clearer understanding of the climate and carrying capacity of the American Southwest, recognizing that not all landscapes and their capacities for human development are the same:

To a great extent, the redemption of all these lands will require extensive and comprehensive plans, for the execution of which aggregated capital or cooperative labor will be necessary. . . . It was my purpose not only to consider the character of the lands themselves, but also the engineering problems involved in their redemption, and further to make suggestions for the legislative action necessary to inaugurate the enterprises by which these lands may eventually be rescued from their present worthless state.24

Powell wrote at a time when massive changes and their resultant impacts upon the American landscape were only beginning to be understood. We are at a similar stage in history when global climate change and an overall recognition of the impacts of people on the natural environment are yielding potentially catastrophic consequences. Powell, Gilbert White, and Jürgen Habermas, writing in different eras, all called for the integration of disciplinary and social thinking about our interaction with the physical world, beginning with the inherent, natural capacities of an environment to perform. Though they approached issues from different perspectives, they also understood a need for a multivalent, interdisciplinary approach to our occupation of the planet that involves ecological, economic, sociological, and artistic metrics.

The unprecedented and unrepeated investment in the American landscape during the New Deal and post–World War II periods provides replicable models from which to develop new systems of infrastructure that will help ameliorate the impacts of urbanization and climate change. New technologies and approaches to infrastructure that value working with natural systems can help create systems that grow stronger and more resilient over time. Collective will, new financing models—public or private—and strong leadership are needed to make WPA 2.0 a natural infrastructure system that can reduce human impact on the global biota.

 


 

Susannah Drake is the founding principal of DLANDstudio Architecture and Landscape Architecture, whose “Rising Currents New Urban Ground” proposal is in the permanent collection of the Museum of Modern Art and Cooper-Hewitt Design Museum. Since 2005, she has taught at Harvard, IIT, FIU, CCNY, Syracuse, Washington University in St. Louis, and The Cooper Union. Her work and writings have appeared in National Geographic and The New York Times, and she has contributed to Infrastructural Urbanism (DOM Publishers, 2011), Under the Elevated (Design Trust for Public Space, 2015), DEMO:POLIS (Akademie der Künste, 2016), and Nature and Cities: The Ecological Imperative in Urban Design and Planning (Lincoln Institute of Land Policy, 2016).

Drawing courtesy of DLANDstudio Architecture + Landscape Architecture, PLLC.

 


 

1. The WPA and the PWA were both New Deal programs during the Great Depression. Despite their similar-sounding names, they have critical distinctions: First, WPA laborers were hired directly by the government, while the PWA contracted much of their work to private entities. Second, the WPA engaged primarily in smaller projects with local governments such as schools, roads, sidewalks, and sewers, while PWA programs included large-scale bridges, tunnels, and dams. See: Leighninger, Robert D. “Cultural Infrastructure: The Legacy of New Deal Public Space.” Journal of Architectural Education, Volume 49, No. 4 (May, 1996): 226–236.

2. Carstensen, Vernon, “Patterns on the American Land,” Publius: The Journal of Federalism, Vol. 18, No. 4 (Fall 1988): 31–39.

3. Stilgoe, John R., Common Landscape of America, 1580 to 1845 (New Haven, CT: Yale University Press, 1983), 104.

4. The origins of this famous phrase about Manifest Destiny in America are disputed. Fred R. Shapiro, the editor of the Yale Book of Quotations, comments on the origins in the Yale Alumni Magazine (September/October 2008); see http://www.archives.yaleulumnimagazine.com.

5. See, for example, de Crèvecoeur, J. Hector St. John, Letters from an American Farmer (London, UK: T. Davies, 1782).

6. See Hudson, John C., Plains Country Towns (Minneapolis: University of Minnesota Press, 1985), which won the first John Brinckerhoff Jackson Book Prize of the Association of American Geographers.

7. Merchant, Carolyn, The Columbia Guide to American Environmental History (New York, NY: Columbia University Press, 2002), 112.

8. Habermas, Jürgen, “The Uncoupling of System and Lifeworld,” in Elliott, Anthony, ed., The Blackwell Reader in Contemporary Social Theory (Oxford, UK: Wiley-Blackwell, 1999), 175.

9. Gilligan, Carol, In a Different Voice: Psychological Theory and Women’s Development (Cambridge, MA: Harvard University Press, 1982).

10. Oberstar, James L., special comments in LePatner, Barry B., Too Big to Fall: America’s Failing Infrastructure and the Way Forward (Lebanon, NH: Foster Publishing, in association with the University Press of New England, 2010), xi.

11. Tracy, Tammy, and Hugh Morris, Rail-Trails and Safe Communities: The Experience on 372 Trails (Washington, D.C.: Rails-to-Trails Conservancy, 1998); available online at http://www.railstotrails.org/resources/documents/resource_docs/Safe%20Communities_F_lr.pdf.

12. See http://www.infrastructurereportcard.org.

13. See, for example, Kolbert, Elizabeth, “The Siege of Miami,” The New Yorker (December 21 and 28, 2015): 42–46 and 49–50.

14. White, Gilbert F., “The Changing Role of Water in Arid Lands,” in Kates, Robert W., and Ian Burton, eds., Geography, Resources, and Environment: Vol. 1, Selected Writings of Gilbert F. White (Chicago, IL: University of Chicago Press, 1986), 137.

15. Ibid.

16. As defined by the EPA, “gray” infrastructure is “conventional piped drainage and water treatment systems” and “green” infrastructure is “designed to move urban stormwater away from the built environment [and] reduces and treats stormwater at its source while delivering environmental, social, and economic benefits.” See EPA, “What is Green Infrastructure”; available at https://www.epa.gov/green-infrastructure/what-green-infrastructure.

17. See, for example, Ganis, John, with essays by Liz Wells and James E. Hansen, America’s Endangered Coasts: Photographs from Texas to Maine (Staunton, VA: George F. Thompson Publishing, 2016).

18. See http://www3.epa.gov for an update.

19. See Alexiou, Joseph, Gowanus: Brooklyn’s Curious Canal (New York, NY: NYU Press, 2015).

20. For an overview of Sponge Park, see Foderaro, Lisa W., “Building a Park in Brooklyn to Sop Up Polluted Waters: Site Will Treat Thousands of Gallons near Canal,” The New York Times (December 16, 2015): A27 and A29.

21. See, for example, Palazzo, Danilo, and Frederick R. Steiner, Urban Ecological Design: A Process for Regenerative Place (Washington, D.C.: Island Press, 2011), 6; and “Rising Currents: Projects for New York’s Waterfront to Respond to Climate Change,” Landscape Architecture China, Vol. 11, No. 3 (June 2010): 70–75.

22. The origins of the rails-to-trails movement was brilliantly presented by Charles E. Little in his now-classic book, Greenways for America (Baltimore, MD: The Johns Hopkins University Press, in association with the Center for American Places, 1990).

23. Carbonell, Armando, Mark Pisano, and Robert Yaro. 2005. Global gateway regions. September. New York, NY: Regional Plan Association. http://www.america2050.org/pdf/globalgatewayregions.pdf.

24. Powell, J. W., “Report on the Lands of the Arid Regions of the United States, with a More Detailed Account of the Lands of Utah” (Washington, D.C.: Government Printing Office, April 2, 1878), viii.
 

Precision Conservation

Pinpointing Pollution in the Chesapeake Bay with One-Meter-Resolution GIS
By Kathleen McCormick, Outubro 12, 2016

The Chesapeake Bay is a cultural icon, a national treasure, and a natural resource protected by hundreds of agencies, nonprofit organizations, and institutions. Now with unprecedented accuracy, a new ultra-high-resolution digital mapping technology, developed by the Chesapeake Conservancy and supported by the Lincoln Institute of Land Policy, is pinpointing pollution and other threats to the ecosystem health of the bay and its watershed, which spans 64,000 square miles, 10,000 miles of shoreline, and 150 major rivers and streams. At one-meter-by-one-meter resolution, the “precision conservation” mapping technology is gaining the attention of a wide range of agencies and institutions that see potential applications for a variety of planning purposes, for use throughout the United States and the world. This new land cover dataset, created by the Conservancy’s Conservation Innovation Center (CIC), has 900 times more information than previous datasets, and provides vastly greater detail about the watershed’s natural systems and environmental threats—the most persistent and pressing of which is pollution of the bay’s waters, which impacts everything from the health of people, plants, and wildlife to the fishing industry to tourism and recreation.

“The U.S. government is putting more than $70 million a year into cleaning up the Chesapeake but doesn’t know which interventions are making a difference,” says George W. McCarthy, president and CEO of the Lincoln Institute. “With this technology, we can determine whether interventions can interrupt a surface flow of nutrients that is causing algae blooms in the bay. We can see where the flows enter the Chesapeake. We’ll see what we’re getting for our money, and we can start to redirect the Environmental Protection Agency (EPA), the Department of Agriculture, and multiple agencies that might plan strategically but not talk to each other.”

The nonprofit Chesapeake Conservancy is putting finishing touches on a high-resolution map of the entire watershed for the Chesapeake Bay Program. Both organizations are located in Annapolis, Maryland, the epicenter of bay conservation efforts. The program serves the Chesapeake Bay Partnership, the EPA, the Chesapeake Bay Commission, and the six watershed states of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia—along with 90 other partners including nonprofit organizations, academic institutions, and government agencies such as the National Oceanic and Atmospheric Administration, the U.S. Fish and Wildlife Service, the U.S. Geologic Survey (USGS), and the U.S. Department of Defense.

On behalf of this partnership, EPA in 2016 invested $1.3 million in state and federal funding in the Conservancy’s high-resolution land cover project, which is being developed with the University of Vermont. Information gleaned from several precision mapping pilot programs is already helping local governments and river partners make more efficient and cost-effective land-management decisions.

“There are a lot of actors in the Chesapeake Bay watershed,” says Joel Dunn, president and CEO of the Chesapeake Conservancy. “We’ve been working on a very complicated conservation problem as a community over the last 40 years, and the result has been layers and layers and many institutions built to solve this problem.”

“Now it’s not a collective will problem but an action problem, and the whole community needs to be partnering in more innovative ways to take restoration of the watershed’s natural resources to the next level,” he adds.

“Conservation technology is evolving quickly and may be cresting now,” Dunn says, “and we want to ride that wave.” The project is an example of the Conservancy’s efforts to take its work to new heights. By bringing “big data” into the world of environmental planning, he says, the Conservancy is poised to further innovate as “conservation entrepreneurs.”

What Is Precision Mapping Technology?

Land use and land cover (LULC) data from images taken by satellites or airplanes is critical to environmental management. It is used for everything from ecological habitat mapping to tracking development trends. The industry standard is the USGS’s 30-by-30-meter-resolution National Land Cover Database (NLCD), which provides images encompassing 900 square meters, or almost one-quarter acre. This scale works well for large swaths of land. It is not accurate, however, at a small-project scale, because everything at one-quarter acre or less is lumped together into one type of land classification. A parcel might be classified as a forest, for example, when that quarter-acre might contain a stream and wetlands as well. To maximize improvements to water quality and critical habitats, higher resolution imaging is needed to inform field-scale decisions about where to concentrate efforts.

Using publicly available aerial imagery from the National Agriculture Imagery Program (NAIP), combined with LIDAR (or Light Detection and Ranging) land elevation data, the Conservancy has created three-dimensional land classification datasets with 900 times more information and close to a 90 percent accuracy level, compared to a 78 percent accuracy level for the NLCD. This new tool provides a much more detailed picture of what’s happening on the ground by showing points where pollution is entering streams and rivers, the height of slopes, and the effectiveness of best management practices (BMPs) such as bioswales, rain gardens, and forested buffers.

“We’re able to translate raw imagery to a classified landscape, and we’re training the computer to look at what humans see at eye level,” and even to identify individual plants, says Jeff Allenby, director of conservation technology, who was hired in 2012 to leverage technology to study, conserve, and restore the watershed. In 2013, a $25,000 grant from the Information Technology Industry Council (ITIC) allowed Allenby to buy two powerful computers and begin working on the digital map. With support from the Chesapeake Bay Program, his geographic information system (GIS)-savvy team of eight has created a classification system for the Chesapeake watershed with 12 categories of land cover, including impervious surfaces, wetlands, low vegetation, and water. It is also incorporating zoning information about land uses from the Chesapeake Bay Program.

The Technology’s Potential

Precision mapping “has the potential to transform the way we look at and analyze land and water systems in the United States,” says James N. Levitt, manager of land conservation programs for the department of planning and urban form at the Lincoln Institute, which is supporting the Conservancy’s development of the technology with $50,000. “It will help us maintain water quality and critical habitats, and locate the areas where restoration activities will have the greatest impact on improving water quality.” Levitt says the technology enables transferring “nonpoint,” or diffuse and undetermined, sources of pollution into specific identifiable “point” sources on the landscape. And it offers great potential for use in other watersheds, such as the Ohio and Mississippi river systems, which, like the Chesapeake watershed, also have large loads of polluted stormwater runoff from agriculture.

It’s a propitious time to be ramping up conservation technology in the Chesapeake region. In February 2016, the U.S. Supreme Court decided not to consider a challenge to the Chesapeake Bay Partnership’s plan to fully restore the bay and its tidal rivers as swimmable and fishable waterways by 2025. The high court’s action let stand a ruling by the 3rd U.S. Circuit Court of Appeals that upheld the clean water plan and reinforced restrictions on the total maximum daily load, or the permissible limit of pollution from substances like nitrogen and phosphorus. These nutrients, found in agricultural fertilizers, are the two major pollutants of the bay, and are addressed under federal water quality standards established by the Clean Water Act. The ruling also allows EPA and state agencies to fine polluters for violating regulations.

The Chesapeake Bay’s water quality has improved from its most polluted phase in the 1980s. Upgrades and more efficient operations at wastewater treatment plants have reduced nitrogen going into the bay by 57 percent and phosphorus by 75 percent. But the watershed states are still in violation of clean water regulations, and increasing urban development calls for constant assessment and pollution reduction in water and critical habitats.

Pilot Project No. 1: Chester River

Backed by funding from ITIC’s Digital Energy and Sustainability Solutions Campaigns, the Conservancy completed a high-resolution land classification and stormwater runoff flow analysis for the entire Chester River watershed on Maryland’s eastern shore. Isabel Hardesty is the river keeper for the 60-mile-long Chester River and works with the Chester River Association, based in Chestertown, Maryland. (“River keeper” is an official title for 250 individuals worldwide who serve as the “eyes, ears, and voice” for a body of water.) The Conservancy’s analysis helped Hardesty and her staff understand where water flows across the land, where BMPs would be most effective, and which degraded streams would be best to restore.

Two-thirds of the Chester River watershed’s land cover is row crops. Row-crop farmers often apply fertilizer uniformly to a field, and the fertilizer runs off with stormwater from all over the site. This is considered nonpoint pollution, which makes it harder to pinpoint the exact source of contaminants flowing into a river—compared to, say, a pile of manure. The Conservancy’s team mapped the entire Chester watershed, noting where rain fell on the landscape and then where it flowed.

“With the naked eye, you can look at a field and see where the water is flowing, but their analysis is much more scientific,” says Hardesty. The map showed flow paths across the whole watershed, in red, yellow, and green. Red indicates higher potential for carrying pollutants, such as flow paths over impervious surfaces. Green means water is filtered, such as when it flows through a wetlands or a forested buffer, making it less likely to carry pollution. Yellow is intermediary, meaning it could go either way. The analysis has to be “ground-truthed,” says Hardesty, meaning the team uses the GIS analysis and drills down to an individual farm level to confirm what’s happening on a specific field.

“We are a small organization and have relationships with most of the farmers in the area,” says Hardesty. “We can look at a parcel of land, and we know the practices that farmers use. We’ve reached out to our landowners and worked with them on their sites and know where pollution may be entering streams. When we know a particular farmer wants to put a wetland on his farm, this land use and water flow analysis helps us determine what kind of BMP we should use and where it should be located.” The value of precision mapping for the Chester River Association, says Hardesty, has been “realizing that the best place to put a water intercept solution is where it’s best for the farmer. This is usually a fairly unproductive part of the farm.” She says farmers generally are happy to work with them to solve the problem.

The Chester River Association is also deploying the technology to use resources more strategically. The organization has a water monitoring program with years of watershed data, which the Conservancy team analyzed to rank streams according to water quality. The association now has GIS analysis that shows the flow paths for all stream subwatersheds, and is creating a strategic plan to guide future efforts for streams with the worst water quality.

Pilot Project No. 2: York County Stormwater Consortium BMP Reporting Tool

In 2013, the Conservancy and other core partners launched Envision the Susquehanna to improve the ecological and cultural integrity of the landscape and the quality of life along the Susquehanna River, from its headwaters in Cooperstown, New York, to where it merges with the Chesapeake Bay in Havre de Grace, Maryland. In 2015, the Conservancy selected the program to pilot its data project in York County, Pennsylvania.

Pennsylvania has struggled to demonstrate progress in reducing nitrogen and sediment runoff, especially in places where urban stormwater enters rivers and streams. In 2015, EPA announced that it would withhold $2.9 million in federal funding until the state could articulate a plan to meet its targets. In response, the Pennsylvania Department of Environmental Protection released the Chesapeake Bay Restoration Strategy to increase funding for local stormwater projects, verify the impacts and benefits of local BMPs, and improve accounting and data collection to monitor their effectiveness.

York County created the York County–Chesapeake Bay Pollution Reduction Program to coordinate reporting on clean-up projects. The Conservancy’s precision mapping technology offered a perfect pilot opportunity: In spring 2015, the York County Planning Commission and the Conservancy began working together to improve the process for selecting BMP projects for urban stormwater runoff, which, combined with increased development, is the fastest growing threat to the Chesapeake Bay.

The planning commission targeted the annual BMP proposal process for the 49 of 72 municipalities that are regulated as “municipal separate storm sewer systems,” or MS4s. These are stormwater systems required by the federal Clean Water Act that collect polluted runoff that would otherwise make its way into local waterways. The commission’s goal was to standardize the project submittal and review processes. The county had found that calculated load reductions often were inconsistent among municipalities because many lacked the staff to collect and analyze the data or used a variety of different data sources. This made it difficult for the commission to identify, compare, and develop priorities for the most effective and cost-efficient projects to achieve water-quality goals.

 


 

How to Use the York County Stormwater Consortium BMP Reporting Tool

To use the online tool, users select a proposed project area, and the tool automatically generates a high-resolution land cover analysis for all of the land area draining through the project footprint. High-resolution data is integrated into the tool, allowing users to assess how their project would interact with the landscape. Users also can compare potential projects quickly and easily, and then review and submit proposals for projects with the best potential to improve water quality. Users then input their project information into a nutrient/sediment load reduction model called the Bay Facility Assessment Scenario Tool, or BayFAST. Users enter additional project information, and the tool fills in the geographic data. The result is a simple, one-page pdf report that outlines the estimated project costs per pound of nitrogen, phosphorus, and sediment reduction. See the tool at: http://chesapeakeconservancy.org/apps/yorkdrainage/.

 


 

The Conservancy and planning commission collaborated to develop the user-friendly, web-based York County Stormwater Consortium BMP Reporting Tool (above), which allows different land use changes and restoration approaches to be compared and analyzed before being put into place. The Conservancy, commission, and municipal staff members collaborated on a uniform template for the proposals and data collection, and they streamlined the process with the same data sets. The Conservancy then trained a few of the local GIS professionals to provide technical assistance to other municipalities.

“It’s easy and quick to use,” explains Gary Milbrand, CFM, York Township’s GIS engineer and chief information officer, who is a project technical assistant for other municipalities. In the past, he says, municipalities typically spent between $500 and $1,000 on consultants to analyze their data and create proposals and reports. The reporting tool, he says, “saves us time and money.”

The commission required all regulated municipalities to submit BMP proposals using the new technology by July 1, 2016, and proposals will be selected for funding by late fall. Partners say the municipalities are more involved in the process of describing how their projects are working in the environment, and they hope to see more competitive projects in the future.

“For the first time, we can compare projects ‘apples to apples,’” says Carly Dean, Envision the Susquehanna project manager. “Just being able to visualize the data helps municipal staffs analyze how their projects interact with the landscape, and why their work is so important.” Dean adds, “We’re only just beginning to scratch the surface. It will take a while before we grasp all of the potential applications.”

Integrating Land Cover and Land Use Parcel Data

The Conservancy team is also working to overlay land cover data with parcel-level county data to provide more information on how land is being used. Combining high-resolution satellite imagery and county land use parcel data is unprecedented. Counties throughout the United States collect and maintain parcel-level databases with information such as tax records and property ownership. About 3,000 out of 3,200 counties have digitized these public records. But even in many of these counties, records haven’t been organized and standardized for public use, says McCarthy.

EPA and a USGS team in Annapolis have been combining the one-meter-resolution land cover data with land use data for the six Chesapeake states to provide a broad watershed-wide view that at the same time shows highly detailed information about developed and rural land. This fall, the team will incorporate every city and county’s land use and land cover data and determine adjustments to make sure the high-resolution map data matches local-scale data.

The updated land use and cover data then will be loaded into the Chesapeake Bay Watershed Model, a computer model now in its third of four beta versions of production and review. State and municipal partners, conservation districts, and other watershed partners have reviewed each version and suggested changes based on their experience in stormwater mitigation, water treatment upgrades, and other BMPs. Data will detail, for example, mixed-use development; different agricultural land uses for crops, hay, and pasture; and measures such as how much land produces fruit or vegetable crops. That’s where the conversion from land cover to land use comes in to help specify the pollution load rates.

“We want a very transparent process,” says EPA’s Rich Batiuk, associate director for science, analysis, and implementation for the Chesapeake Bay Program, noting that the combined land cover and land use data will be available online, at no cost. “We want thousands of eyes on land use and cover data. We want to help state and local partners with data on how we’re dealing with forests, flood plains, streams, and rivers. And we want an improved product that becomes the model for simulations of pollution control policies across the watershed.”

Scaling Up and Other Applications

As the technology is refined and used more widely by watershed partners, the Conservancy hopes to provide other data sets, scale up the work to other applications, and conduct annual or biannual updates so the maps reflect current conditions. “This data is important as a baseline, and we’ll be looking at the best way to be able to assess change over time,” says Allenby.

Watershed partners are discussing additional applications for one-meter-resolution data, from updating Emergency-911 maps, to protecting endangered species, to developing easements and purchasing land for conservation organizations. Beyond the Chesapeake, precision mapping could help conduct continental-scale projects. It offers the conservation parallel to precision agriculture, which helps determine, for example, where a bit of fertilizer in a specific place would do the most good for plants; the two combined could increase food production and reduce agriculture’s environmental impact. The technology could also help with more sustainable development practices, sea level rise, and resiliency.

Many people said it wasn’t feasible for a small nonprofit to do this kind of analysis, says Allenby, but his team was able to do it for a tenth of the cost of estimates. The bigger picture includes making land use and cover data available to the public for free. But that’s an expensive proposition at this point: The data needs backup, security, and a huge amount of storage space. Working with Esri, a Redlands, California-based company that sells GIS mapping tools, as well as Microsoft Research and Hexagon Geospatial, the Conservancy team is transferring the data. The process now runs linearly one square meter at a time. On a cloud-based system, it will run one square kilometer at a time and distribute to 1,000 different servers at once. Allenby says this could allow parcel-level mapping of the entire 8.8 million square kilometers of land in the United States in one month. Without this technology, 100 people would have to work for more than a year, at much greater cost, to produce the same dataset.

Precision mapping could bring greater depth to State of the Nation’s Land, an annual online journal of databases on land use and ownership that the Lincoln Institute is producing with PolicyMap. McCarthy suggests the technology might answer questions such as: Who owns America? How are we using land? How does ownership affect how land is used? How is it changing over time? What are the impacts of roads environmentally, economically, and socially? What changes after you build a road? How much prime agricultural land has been buried under suburban development? When does that begin to matter? How much land are we despoiling? What is happening to our water supply?

“Can it solve big social problems?” queries McCarthy. One of biggest outcomes of precision mapping technology would be to develop better ways to inform land use practices, he says, especially at the interface between people and land, and water and land. Land records are needed to use this technology most effectively, which might be challenging in some places because these records don’t exist or are inconsistent. But it’s a methology and technology that can be used in other countries, he says. “It‘s a game changer, allowing us to overlay land use data with land cover data, which could be hugely valuable to rapidly urbanizing places like China and Africa, where patterns and changes will be seen over the land and over time. It’s hard to exaggerate the impact.”

“Our goal is the world, to use this technology for transparency and accountability,” says McCarthy. “The more information planners have access to, the better stewards we can be for the planet.” The tool should be shared with “people who want to use it for the right purposes, so we’re making the value proposition that this is a public good that we all need to maintain,” he says, similar to the way USGS developed GIS.

“We need the right public-private arrangement, something like a regulated public utility with public oversight and support that will maintain it as a public good.”

 

Kathleen McCormick, principal of Fountainhead Communications, LLC, lives and works in Boulder, Colorado, and writes frequently about sustainable, healthy, and resilient communities.

Image by The Chesapeake Conservancy