Topic: Infraestrutura

Tecnociudad

Uber subsidiado en los suburbios
By Rob Walker, Julho 31, 2016

Durante años, pareció que el próximo adelanto importante en cuanto al transporte público en la ciudad suburbana de Altamonte Springs, Florida, sería un programa innovador denominado FlexBus. En lugar de recorrer rutas fijas, estos autobuses responderían a las demandas de los kioscos ubicados en centros de actividad específicos. Este sistema era, en palabras del administrador municipal Frank Martz, “el primer proyecto de transporte a demanda desarrollado en los Estados Unidos”. Algunos incluso se referían a este sistema como “el Uber para el tránsito”.

Lamentablemente, no funcionó. El operador regional de autobuses que gestionaba el proyecto perdió el financiamiento federal clave que requería el sistema, por lo que Altamonte Springs tuvo que buscar una nueva solución. Tal como expresa Martz, “en lugar de enojarnos, decidimos resolver el problema, ya que todavía teníamos que brindarles un servicio a nuestros residentes”.

Esta vez, los funcionarios se decidieron por Uber. La primavera pasada, el suburbio de Orlando anunció que se asociaría directamente con la firma de transporte compartido y subsidiaría a los ciudadanos que optaran por usar dicho servicio en lugar de sus propios automóviles, especialmente para viajes hacia las estaciones de ferrocarril regionales que conectan a los centros de población alrededor del condado de Seminole. Este programa piloto ha tenido una aceptación popular lo suficientemente buena, por lo que otros municipios dentro del área ya han lanzado programas similares.

Casi todo lo que oímos acerca de la relación entre los municipios y los emprendimientos de transporte compartido implica contiendas. Para la época en que Altamonte Springs comenzó su programa piloto, un enfrentamiento sobre detalles normativos en Austin, Texas, dio como resultado que Uber y su principal competencia, Lyft, dejaron de prestar servicios en esa ciudad. Sin embargo, Altamonte Springs es un ejemplo de cómo algunas ciudades, planificadores y académicos están intentando encontrar oportunidades dentro de la creciente importancia y popularidad del transporte compartido. El Laboratorio Senseable City del MIT ha trabajado con Uber; y el Centro de Investigación para la Sostenibilidad del Transporte de la Universidad de California en Berkeley y otras instituciones han estado estudiando los datos relacionados con el transporte compartido, con un enfoque en sus efectos sobre el transporte público. Además, el pasado marzo, la Asociación de Transporte Público de los Estados Unidos divulgó un estudio en el que se evaluaba la manera en que los nuevos servicios pueden ser un complemento a las formas más familiares de “movilidad compartida”, y se sugerían diferentes formas en que las agencias podían “promover una cooperación útil entre los proveedores de transporte público y privado”.

“Todo se reduce a la forma en que el nuevo sistema interactúa con el sistema tradicional existente”, opina Daniel Rodríguez, fellow del Instituto Lincoln y profesor de planificación en la Universidad de Carolina del Norte, quien además ha estudiado las innovaciones en el transporte en América Latina y los Estados Unidos. Rodríguez espera que surjan aun más experimentos a medida que las ciudades hacen todo lo posible para ver cómo “los usuarios de Uber pueden complementar la infraestructura existente”.

Y esto describe casi en su totalidad una de las primeras motivaciones del programa piloto de Uber en Altamonte Springs: el servicio, según Martz, era una opción que ya existía y que no requería ninguno de los compromisos de tiempo y dinero asociados a una iniciativa de transporte típica. “El enfoque no podía ni debía ponerse en la infraestructura”, observa Martz. “Debíamos centrarnos en el comportamiento humano”. En otras palabras, los servicios de transporte compartido ya responden a la demanda que el mercado demuestra tener; entonces ¿cómo podría la ciudad aprovechar dicha tendencia?

La respuesta fue ofrecer un subsidio a los usuarios del municipio: la ciudad pagaría el 20 por ciento del costo de cualquier viaje dentro de la ciudad, y el 25 por ciento del costo de cualquier viaje desde o hacia las estaciones de Sun Rail, el sistema de ferrocarril suburbano de la región. Los usuarios sólo tienen que ingresar un código que funciona en conjunto con la tecnología geofencing (segmentación geográfica) de Uber para confirmar la elegibilidad geográfica, la tarifa se reduce según lo que corresponda, y el municipio continuamente cubre la diferencia. “Es un tema de conveniencia para el usuario”, indica Martz, aunque hace hincapié en un tema más importante que la facilidad de pago. En lugar de crear sistemas a los que los ciudadanos respondan, tal vez sea mejor intentar un sistema que responda a los ciudadanos en donde se encuentran, y que se adapte en tiempo real a medida que cambian de lugar.

Queda por ver si este sistema funcionará a largo plazo, pero, como experimento, los riesgos son bastante bajos. Martz ha estimado un costo anual para el municipio de aproximadamente US$100.000 (el costo del proyecto anterior del FlexBus era de US$1.500.000). Aunque el plan piloto sólo lleva unos pocos meses en marcha, Martz observa que, a nivel del municipio, Uber se utiliza diez veces más que antes, razón por la cual otros municipios vecinos, tales como Longwood, Lake Mary, Sanford y Maitland, se han sumado al proyecto o han anunciado sus planes para hacerlo. “Estamos creando un grupo de trabajo entre nuestras ciudades”, agrega Martz, con el objetivo de gestionar la congestión del tránsito y ver “cómo conectar nuestras ciudades”.

Tal como lo indica Rodríguez, sólo las implicaciones en cuanto al uso del suelo, tanto a corto como a largo plazo, son convincentes de por sí. En cuanto al día a día, la posibilidad de tener un transporte compartido económico para, por ejemplo, ir al médico, acudir a reuniones en la escuela o realizar trámites similares reduce la demanda de espacios de estacionamiento. A un nivel más amplio, este sistema aprovecha las opciones que ya existen, en lugar de tener que diseñar proyectos con un uso más intensivo del suelo que pueden llevar años de planificación e implementación.

En un sentido, el experimento se encuadra dentro de una tendencia mucho más amplia de buscar innovaciones de transporte específicas. Rodríguez ha estudiado varios experimentos, desde sistemas de autobús ideados en forma local hasta tranvías por encima del nivel del suelo en América Latina que complementaban los sistemas existentes, en lugar de construir sistemas nuevos. Rodríguez señala además que, aunque, a primera vista, el concepto de asociarse con un servicio de transporte compartido pueda parecer que funciona solo en municipios pequeños que carecen de un sistema realista de tránsito masivo, este proyecto podría funcionar realmente bien en ciudades más grandes. Por ejemplo, tenemos el caso de São Paulo, Brasil, que ofrece lo que el suplemento CityLab de la revista The Atlantic ha dado en llamar “el mejor plan que existe para tratar con Uber”: en esencia, subastar créditos, disponibles tanto para los servicios de taxi existentes como para los emprendimientos de transporte compartido, para realizar viajes por una cantidad específica de kilómetros en un tiempo determinado. Los detalles normativos (diseñados, en parte, por Ciro Biderman, ex fellow del Instituto Lincoln) tienen por fin brindarle opciones a la ciudad, a la vez que atraen y explotan la demanda del mercado, en lugar de intentar darle forma.

Esta idea se condice con la postura amplia de Martz, quien se pregunta, “¿Por qué el sector público debe enfocarse en una infraestructura que era aceptada por los usuarios de hace 40 años?” Aunque de inmediato observa que esta forma de pensamiento en cuanto a las políticas se encuentra alineada en gran medida con las posturas que promueven los libres emprendimientos en un “condado muy republicano”, Martz también insiste en que el apoyo político municipal al plan ha cruzado los límites partidarios. Y lo que resulta más significativo es que esta solución, según Martz, permite que la ciudad se adapte mucho más fácilmente a los cambios tecnológicos que se van dando. La opción de compartir el vehículo parece ser una posibilidad lógica, y se sabe que Uber y otras empresas tecnológicas están barajando la posibilidad de utilizar vehículos sin conductor, que podrían incluso ser más eficientes. Martz no lo expresa abiertamente, pero si Uber se ve “afectado” por una solución más eficiente, asociarse con una firma nueva sería mucho más fácil que rehacer un proyecto de varios años en toda la región. “Dejemos que ganen las fuerzas del mercado”, sugiere Martz.

Por supuesto que, tal como indica Rodríguez, todo este sistema se encuentra aún en una etapa muy experimental, y la aceptación total de un sistema de transporte compartido puede también traer efectos negativos: obviamente el sistema se centra en los automóviles, por lo que no es necesariamente económico para un amplio sector de la población en muchas ciudades, incluso teniendo en cuenta el 20 por ciento de descuento. Además, la posibilidad de viajar mayores distancias a un costo más bajo ha sido uno de los factores principales de la expansión urbana descontrolada. “Esto podría representar un paso más en esa dirección”, observa Rodríguez.

Sin embargo, esta combinación de incertidumbres y posibilidades es exactamente la razón por la que vale la pena ocuparse de medidas que acepten a los emprendimientos de transporte compartido en lugar de enfrentarse a los mismos. “Por el momento, no existe una respuesta correcta; todavía estamos investigando el tema”, advierte Rodríguez. Aun así, los sistemas como Uber de hecho ofrecen un atributo que aquellos que desean experimentar cosas nuevas no pueden negar: “Es tangible, y se sabe que funciona”, concluye Rodríguez. 

 

Rob Walker (robwalker.net) es colaborador de Design Observer y The New York Times.

Oportunidades de bolsas para estudantes graduados

2019 C. Lowell Harriss Dissertation Fellowship Program

Submission Deadline: March 1, 2019 at 6:00 PM

The Lincoln Institute's C. Lowell Harriss Dissertation Fellowship Program assists Ph.D. students, primarily at U.S. universities, whose research complements the Institute's interests in land and tax policy. The program provides an important link between the Institute's educational mission and its research objectives by supporting scholars early in their careers.

For information on present and previous fellowship recipients and projects, please visit C. Lowell Harriss Dissertation Fellows, Current and Past


Details

Submission Deadline
March 1, 2019 at 6:00 PM


Downloads

Oportunidades de bolsas

2019 Lincoln Institute Scholars Program

Submission Deadline: September 30, 2019 at 11:59 PM

The Department of Valuation and Taxation hosts a program in which recent PhDs specializing in public finance or urban economics have an opportunity to work with senior economists.

For information on previous Lincoln Scholars, please visit Lincoln Scholars Program Alumni


Details

Submission Deadline
September 30, 2019 at 11:59 PM


Downloads

Wébinars

Webinar: Financing Infrastructure for Cities

Novembro 9, 2016 | 2:00 p.m. - 3:00 p.m.

Free, offered in inglês

Cities around the world are facing a crisis of investment. An integral part of solving this challenge requires building local government capacities and providing practitioners, academics, and advisors who work with cities with leading strategies that have the potential to advance infrastructure investment in ways that contribute to sound municipal fiscal systems. Join the Lincoln Institute of Land Policy in our first Municipal Fiscal Health webinar series focused on infrastructure finance in the U.S. featuring: Dr. Julie Kim, a global infrastructure finance expert at Stanford University’s Global Projects Center with over 30 years of public-private partnerships and infrastructure consulting experience in the U.S. and Asia; and Nicole DuPuis, from the nation’s leading advocacy organization devoted to strengthening and promoting cities as centers of opportunity, leadership and governance, the National League of Cities.

Speakers:

Dr. Julie Kim
Stanford University
New Cities Foundation
Read Full Bio Here

Nicole DuPuis
City Solutions and Applied Research Center
National League of Cities
Read Full Bio Here

Participant Outcomes:

  • Learn about the magnitude of the infrastructure challenges facing cities from the 2016 National League of Cities Infrastructure Report.
  • Hear strategies that are being leveraged by cities to navigate the complex world of infrastructure financing sustainably and finance bankable projects.
  • Understand expert insights from Dr. Julie Kim’s Handbook on Urban Infrastructure Finance, developed by The New Cities Foundation and Stanford University to help cities understand a myriad of financing vehicles, including land value capture instruments, bonds, public private partnerships, and others.
  • Created with an interdisciplinary focus, the conversation endeavors to offer strategies to leaders working with cities in both the finance and planning disciplines.

Details

Date
Novembro 9, 2016
Time
2:00 p.m. - 3:00 p.m.
Application Period
Novembro 4, 2016 - Novembro 4, 2016
Language
inglês
Registration Fee
Free
Cost
Free

Keywords

Infraestrutura, Governo Local, Saúde Fiscal Municipal, Finanças Públicas, Desenvolvimento Urbano

WPA 2.0

Beauty, Economics, Politics, and the Creation of New Public Infrastructure
By Susannah Drake, Outubro 12, 2016

This feature is adapted from Nature and Cities: The Ecological Imperative in Urban Design and Planning, edited by Frederick R. Steiner, George F. Thompson, and Armando Carbonell (Lincoln Institute of Land Policy, November 2016).

During the past 400 years, the land known as the United States of America has been transformed by massive public and private works projects and technological innovations intended to facilitate commerce, improve public health, and foster economic development. While these projects generated tremendous wealth for the nation, the gains were often to the detriment of the environment. The global realities of climate change—in combination with growing urbanization and associated poverty—have raised awareness of the ecological impact of such infrastructure. Americans are now at a unique moment in history when politics, economics, ecology, and culture (design) can all be part of a new movement. We need a WPA 2.0.

The WPA is the Works Progress Administration (1935–1943)—the largest and most ambitious program of U.S. President Franklin D. Roosevelt’s New Deal during the Great Depression. Much of the present-day infrastructure in the United States was built by either the WPA or the similarly named PWA (Public Works Administration). Almost every city, town, and community in America benefited from a new WPA- or PWA-built airport, bridge, dam, park, road, school, or other public building.1

Let me now reflect, albeit briefly, on the history of public works projects in the United States to discern where the world’s richest nation is, today, in terms of its urban infrastructure. This will allow a glimpse into how landscape architects, architects, and planners are addressing the needs and opportunities that face not only American cities, but communities and cities throughout the world as they confront the pressing realities of global climate change.

Canals and Harbors

Early settlement in the United States showed patterns of towns and cities directly related to water resources. Navigable waterways, safe harbors, and access to fresh water for fire prevention, sanitation, power production, farming, and drinking were central to the development of major commercial centers. Construction of the Erie Canal (1817–1825), for example, made New York the financial capital of the world during the nineteenth century by opening up critical supply lines for timber, furs, minerals, and agricultural products that helped the North win the American Civil War (1861–1865). Since then, we have seen the gradual decoupling of urban transportation systems from the physical environment in the United States.

The Grid

Looking back to nineteenth-century America, ideals of Manifest Destiny and the agrarian myth fueled a need to organize and cultivate the nation’s western frontiers. The Land Ordinance Act of 1785 was a resolution written by Thomas Jefferson (1743–1826), then a delegate from Virginia, to create a federal system for the survey and sale of federally owned land west of the Appalachian Mountains, intended to fund the federal government at a time when the government could not raise fiscal resources through taxation.2 It was then that an uncoupling of environmental and development systems started to take place on a large scale: The public land survey system parceled land into gridded territories, townships, and sections without regard to the geomorphology or carrying capacity of the property. Territories (24 x 24 miles; 38.624 x 38.624 kilometers), townships (6 x 6 miles; 9.656 x 9.656 kilometers), and sections (1 x 1 mile; 1.609 x 1.069 kilometers) were numbered and organized boustrophedonically, an alternating pattern from the top right to the bottom left quadrant of a square, similar to the path a farmer might follow when plowing a field.3

Agriculture, Railroads, and the Grid

When Horace Greeley (1811–1872), the famous editor of The New York Herald Tribune, purportedly declared in an editorial (13 July, 1865), “Go West, young man, go West and grow up with the country,” he rallied the nation.4 Greeley was responding, in part, to the Homestead Act of 1862, which enabled veterans, freed slaves, and even women to file a claim to a half-section of land (640 acres; 260 hectares) if they agreed to live on it and improve it for five years, further promoting agrarian values that were part of an American nationalism, which developed during a time of rapid industrialization. Manifest Destiny and agrarian culture, as characterized decades earlier by de Crèvecoeur (1735–1813) in numerous books, mythologized farming, espousing rural life as the foundation of character.5 However, the gridding of America and subsequent development of national rail lines—enabled by government grants of more than 300 million acres (121,405,693 hectares) to rail companies—were not reliant on natural systems for their development; instead, both worked in opposition to the waterways and topography they encountered, some of them extreme.

Supremacy over the landscape had its limits. While rail lines could be drawn to previously inaccessible corners of the country, facilitating commerce, they required long, gradual grade change and abundant clean water to function, limiting universal access. Farms and towns located themselves on and near new rail lines, but land in more arid climates west of the 100th meridian did not have the carrying capacity characteristic of Thomas Jefferson’s Virginia.6 Parcels of half-sections needed to be combined and annexed to enable productive use for timber or cattle grazing, uses that have their own heavy impacts on indigenous landscapes. The scale of operations moved toward a more standardized practice, away from the ideals of the rural farm. Western settlers and transcendentalists alike thought nothing of the consequences of introducing nonnative plant communities to the detriment of the indigenous environment.

A hallmark of the Industrial Revolution in the United States was the first transcontinental linking of rail lines—the Union and Central Pacific Railroads at Promontory Summit in Utah Territory near present-day Brigham City—on 10 May, 1869. Infrastructure tied to natural systems for the first two and a half centuries of the nation’s development could now follow a much more flexible path. By 1910, there was a network of more than 250,000 miles (402,336 kilometers) of rail covering the United States. Coeval with this infrastructural growth, the nation’s waterways transitioned from being critical economic lifelines to convenient disposal sites. As Carolyn Merchant has observed, “In the United States, industrial chemicals and wastes, including sulfuric acid, soda ash, muriatic acid, limes, dyes, wood pulp, and animal byproducts from industrial mills contaminated waters in the Northeast.”7 Ongoing pollution of rivers, canals, and ports still leaves neighboring communities managing the consequences of years of environmental abuses, despite the benefits of the 1972 Clean Water Act.

As natural systems became less important for access, they remained critical for raw materials. The relationship between water rights and rail lines, for instance, was critical not only because clean water was necessary to power steam engines, but also because the relationship between agriculture and rail transport systems opened up new areas of the country for the development and trade of commodities such as corn and wheat, legacy crops to this day.

Combined Sewers

When English plumber Thomas Crapper (1836–1910) popularized the use of the flush toilet during the 1860s, he surely had no idea of the potential future impact upon municipal watermanagement systems. His work triggered a cascade of events leading to the degradation of global waterways 150 years later. Rapid urbanization in the United States during the nineteenth century created the need for collective management of sanitary waste. In search of innovation, the United States looked to Europe, where a new form of infrastructure—the combined sewer—was developed to manage increased sanitary waste coming from more flush toilets. Combined sewer overflows (CSOs) release a witch’s brew of surface-water runoff and sanitary sewage into neighboring waterways when there is too much effluent for treatment plants to manage. Today, New York City, like 772 U.S. cities, has a combined sewer system where—in even a light rain—sanitary and storm wastes combine, releasing excrement, prophylactics, oil, pesticides, and heavy metals into New York’s harbor and rivers.

Around the world the combined sewers that unite sewage and stormwater in a common pipe—once a transformative infrastructure solution—have reached their limit. Growing urban populations and increased impermeable surfaces perpetually overload the sewage-treatment systems in cities globally. With sewage ever more frequently overflowing into waterways and a rise in sea level further compromising the outfall systems, policy makers and even private funders need to empower designers to rethink the design and management of urban stormwater and sanitary water systems. More severe and frequent storms resulting from global climate change will increasingly affect the hardened, postindustrial waterfront. Innovative urban design that can dissipate the forces of storm surge, manage flooding, reduce surface-water runoff, and reduce a heat-island effect need to be worked into an adaptation plan for waterfront cities. Without major changes to technology, the natural and human resource management of global health and productivity will be compromised.

The New Deal

Beginning in 1933, during the depths of the Great Depression, political leaders in the United States put forward programs under the New Deal that offered targeted relief for the massive number of unemployed and poor Americans, gradual recovery in the economic sector, and reform of the financial system. Significantly, New Deal programs also transformed the nation’s critical infrastructure. Roads, water-management structures, and pathways for electrification provided access, sanitation, and power to formerly undeveloped areas of the country. Parks, public buildings, bridges, airports, and other civic projects followed. Under President Franklin D. Roosevelt, the WPA employed millions of unemployed people, including women and minorities, constructing a renewed cultural identity for the nation.

A hallmark of the New Deal programs—valued at $20 billion (more than $347 billion at current value)—was the work of artists, writers, landscape architects, architects, and other creative professionals who helped shape the look and cultural literacy of the country during the twentieth century. Legions of laborers guided by designers and bureaucrats worked locally with a regional palette of materials to create extraordinarily beautiful yet practical work that reflected national pride and civic awareness. The work was modern and aspirational and showcased indigenous character and material. President Roosevelt understood the need for large-scale government action to help get the country back on its feet and headed in a new direction.

The Federal Highway System

Two decades later, in the aftermath of World War II and the Korean War, President Dwight D. Eisenhower signed the Federal-Aid Highway Act of 1956 into law. Also known as the National Interstate Defense Highways Act, the transcontinental highway system was presented to the public as essential to national defense systems and was funded at a cost of $25 billion through a tax on gasoline and diesel fuel. The term “infrastructure,” which developed during World War II to describe military logistical operations, became one of the president’s most visible and longlasting initiatives in the form of the U.S. interstate highway system. Eisenhower, the five-star general and supreme commander of Allied forces in Europe during the war, admired the efficiency of the German autobahns and sought to create a similar system in the United States. The unified design standards for the nation, consistent with the tenets of modernism, suggested the potential of technology to overcome geophysical obstacles in the landscape with hard engineering. The project catalyzed the development of sprawling new mega-regions of the late twentieth century.

Uncoupling

The sociologist and philosopher Jürgen Habermas (b. 1929), in his 1999 essay “The Uncoupling of System and Lifeworld,” suggested that the processes of differentiation and specialization inherent to modernism are undemocratic and that a democratic system of leadership in advanced capitalistic societies such as the United States enables decision making that is unreflective of society’s broader voice:

But political domination has socially integrating power insofar as disposition over means of sanction does not rest on naked repression, but on the authority of an office anchored in turn to legal order. For this reason, laws need to be inter-subjectively recognized by citizens; they have to be legitimated as right and proper. This leaves culture with the task of supplying the reasons why an existing political order deserves to be recognized.8

Through a democratic system, leaders are empowered to make massive decisions about the shape of their country with what I might characterize as “blind faith” in paternalistic power, which, when coupled with postwar fear and fatigue, is further enhanced. Technology reigned in the post–World War II period, and American culture was such that an uncoupling of the systems (such as interstate highways) from the life-world (the social and physical environment)—when presented by a war hero turned president—carried the necessary balance of paternalism and idealism to enable political support for the largest public works project in U.S. history.

As repressed groups, stifled by modernism’s systems-based approaches, found voice in the later twentieth century, the need for “different voices” (to borrow Carol Gilligan’s term) infused culture.9 The women’s movement, civil rights movement, and modern environmental movement each lent local and personal voices against the unsupportable rationality of current power structures. For the environmental movement, this contributed to important legislation such as the Clean Air Act of 1963 and the Clean Water Act of 1972.

The Problem

Many of the projects completed during the New Deal era are at the end of their lifespan. As James L. Oberstar has concluded:

Nearly sixty years after much of the interstate highway system was constructed in the 1950s and 1960s, we are now seeing many facilities become stretched to the limit of their design life and beyond. The world-class surface transportation system passed on by previous generations of Americans has reached the age of obsolescence and now needs to be rebuilt.10

Many canals and harbors are no longer used for commerce with the same intensity they once were, and they are, in many cases, decayed, underutilized, polluted, and subject to rising sea level and storm surge. Less than half of the original 300,000 miles (482,803 kilometers) of rail corridors across the United States are still in use for rail.11 America’s 772 cities have combined sewers that still dump significant amounts of sewage effluent into waterways. Highways and bridges are in similarly poor condition. The repair and replacement of these monumental infrastructure systems in their current configurations do not reflect social, environmental, and technological advances that have occurred during the last half century.

Every four years, the American Society of Civil Engineers issues a report card on America’s infrastructure. Here are the grades given in 2013 and 2009:

Categories 2013 2009

Aviation/Airports

D D
Bridges C+ D
Dams D D
Drinking Water D D-
Energy D+ D+
Hazardous Waste D D
Inland Waterways D- D-
Levees D D-
Ports C (N.A.)
Public Parks and Recreation C- C-
Rail C+ C-
Roads D D-
Schools D D
Solid Waste B- C+
Transit D D
Wastewater D D-
Overall Grade D+ D

D = Poor; C = Mediocre; B = Good.12

An unprecedented combination of deeply troubling environmental problems, political evolution, and new design and technology now present an unparalleled opportunity to improve America’s infrastructure. Given the realities of global climate change and increased urbanization and population growth, interdisciplinary teams of thinkers must develop models of urban design that work with the hydrologic, transportation, ecologic, economic, and cultural systems that will make cities better-performing and more compelling places to work, live, and raise families. It is unclear whether this work will be driven primarily by the federal government, as it is in France or the Netherlands, or through the public-private partnership models common in the United States. The crucial role of design in the public realm is undervalued and attitudes need to change.

Understanding how physical geography, ecology, and climate function is critical to the development of new types of infrastructure that are more responsive to the forces of nature. The idea of using natural systems to provide public amenities and health benefits is not new. Frederick Law Olmsted (1822–1903), for example, used tidal flows to reduce pestilence and pollution in his design and plan for the Back Bay Fens of Boston during the late 1880s. With advances in technology in the aftermath of the Industrial Revolution, engineered solutions were seen as superior to historical precedent. Viewing infrastructure as a machine was the answer. As we observed in the aftermath of Hurricanes Katrina (2005), Irene (2011), and Sandy (2012), engineered systems are inflexible and can fail with catastrophic consequences as the severity, frequency, and intensity of storm events increase.

It is time to rethink the nineteenth- and twentieth-century engineering model and consider options that can again work in concert with the natural environment. Roads were traditionally aligned with rivers in many rural areas because they were cheaper to build, but roads and bridges in Vermont were destroyed in minutes by the flood-swollen rivers during Hurricane Irene. In metropolitan New York, highways, train yards, tunnels, and public housing located in floodplains along the postindustrial waterfront, where the land was cheap, were severely flooded during Hurricane Sandy in 2012. Replacement of New Jersey’s PATH trains and rebuilding of flooded tunnels and other public and private property in areas subject to more frequent inundation is costing taxpayers hundreds of millions of dollars a year when states of emergency are declared so frequently. Miami sits on a permeable bed of limestone at the interface of saltwater and freshwater and faces frequent hurricanes and flooding from upland and coastal sources that threaten not only its major industry—tourism—but also the ecological health of the Everglades.13

In many cities across the United States, combined sewer systems were an economical solution to sanitary engineering until climate change and population growth changed the balance sheet. Today, designers and public officials often look to Europe for water-management technology. American municipalities first looked at examples of combined sewers in France and Germany, and they now look to the Dutch for flood control. The Netherlands translates literally to “low lands,” and its strategy of planning includes 200 years into the future (long term), while constantly reconstructing dikes, dams, and polders (short term) is seen as necessary to protect not only the built environment, but also the agricultural economy dependent on sweet water (the Dutch term for fresh nonsaline water). In the United States, municipalities need to look further to the future and realize there are real opportunities to develop new innovations based on the nation’s geographic diversity. The prominent American geographer Gilbert F. White (1911–2006), in addressing the 1934 national flood-control policy, suggested that the multi-billion-dollar program to build reservoirs, canals, levees, and deeper river channels did not reduce flood losses decades later. In his words:

By assuming that only engineering works were needed to curb the cost of unruly streams, other possibly effective means were neglected. Little or no attention was paid to such alternatives as land use regulation or flood-proofing of buildings. By assuming the engineering works would do what the benefit-cost calculations had solemnly estimated they would do, without attempting to verify the practical results in land use, the public reaped quite different effects.14

America’s reliance on water-management structures thus provides a false sense of security in relation to availability, cost, and protection from catastrophic flooding. White suggested further that the “single purpose levee may set a confident scene for later catastrophe; a single-purpose reservoir may appropriate a unique dam site without assuring complete reduction in flood losses.”15 In many of White’s essays—written over a period of 60 years as a professor of geography and esteemed government advisor on natural hazards and flooding—he advocated a more holistic approach to design and planning and a testing of applied technology to gauge effectiveness.

Solutions

We know that gradual, buffered waterfront edges and barrier islands can dissipate wave energy, contain saltwater inundation, and make habitat that also helps to sequester carbon. The function of barrier reefs, salt marshes, and cypress swamps can thus inspire new models for an ecosystem’s management. Planning and designing for the periodic swells of rivers and streams may well necessitate an incentivized plan such as Zone (A)ir to relocate homes, towns, roads, communities, and businesses. It is critical that we adapt the architecture (buildings) and landscape architecture (infrastructure and outdoor space) by rethinking the porosity of the landscape, the materials of construction, the relocation of mechanical systems, and access. To the point: Our roads can soak up water, our highway trenches can be covered with parks that clean the air and provide recreational space, our waters’ edges can have an alternating combination of hard edges to facilitate commerce and softer edges to protect valuable upland real estate. Key to all of this thinking is the interface between human occupation and the environment.

The beginnings of this work in ecological design and planning are already apparent in Chicago, Philadelphia, and Portland, Oregon, where sidewalk swales and porous paving are becoming part of the standard streetscape. New York City is also taking on pilot projects to test the effectiveness of new materials and ideas, but testing takes time when action is needed. In floodplains along the Mississippi River, communities with low populations are being relocated and spillways opened to flood farmlands so that population centers downstream are safer. We cannot contain the force of water, as we once believed. Long-term, large-scale planning and actions that reduce our impact on the land, work in concert with natural systems, and enable new systems of exchange are necessary if we are to lessen the impacts of nature’s force.

Gilbert White long ago suggested a holistic and integrated regional approach to sound water management, but his voice fell on deaf ears, as single-purpose engineering solutions to local problems were constructed without consideration of watersheds and “sewersheds.” As towns and cities now work to manage aging infrastructure that is unable to handle impacts of more frequent storms and a rising sea, they have a huge opportunity to embrace new thinking and technology that, more than four decades after the federal Clean Water Act became law, will ameliorate day-to-day and storm-related wastewater loads with new and holistic gray/green engineered approaches.16 The costs of new infrastructure are real: Presently, approximately $95 billion will be needed to mitigate combined sewer overflows to bring cities in compliance with the 1972 law. Simultaneously, hundreds of billions will be needed to protect communities and cities against future flooding. Resources to address these issues should be combined for cost-effectiveness and efficiency.

Expansion of new green infrastructure networks—where hard surfaces are removed, utilities are protected, and stormwater is channeled for the irrigation of public parks, gardens, and wetlands—can also help mitigate and absorb floodwaters. Green (nature-based) infrastructure systems allow us to rethink not only the overarching functions of infrastructure, but also our experience of nature in the city. Municipalities have an opportunity to design and plan in the most comprehensive and cost-effective manner. The survival of towns and cities that currently exist at or just above sea level depends on aggressive, widespread rethinking of infrastructure for resilience to climate change and destructive storms. As we know, even if all 196 nations honor the commitments each made in Paris, in December 2015, to mitigate the effects of climate change, the global sea levels will rise at least 3 to 4 feet (0.914 to 1.219 meters) within a century, and all areas along the world’s coasts with elevations under 15 feet (4.572 meters) are extremely vulnerable to high tides and storm surge.17

WPA 2.0: A New Natural Infrastructure System

In response to the 285 deaths and widespread devastation (more than $50 billion in damage) caused by Hurricane Sandy (2012), three levels of U.S. government—federal, state, and local— established commissions, task forces, special initiatives, white papers, 12-point plans, plenary panels, and waterfront revitalization programs, all with vaguely military overtones that would convey action and strength. But will anything come of their recommendations? How can their ambitious designs and plans for modifications and improvements to make our city, state, and national infrastructure resilient to regular and extreme weather impacts be financed? To mitigate and counter the effects of an aging and ill-equipped infrastructure, to prepare now for global climate change, and to finance a new resilient defense network, I propose WPA 2.0 as a timely and much-needed solution.

The new infrastructure needed to adapt the nation’s cities, communities, and rural countryside to the realities of flooding and global climate change will require reconstruction on a massive scale of both gray and green infrastructure systems. Traditional, inflexible “gray” engineering approaches—which require waterproofing of transit systems, tunnels, and utilities or redirecting water with levees, dikes, and barriers—will work better in tandem with more resilient, ecological “green” approaches, including using currents and wind to distribute sediment for new barrier islands, reusing dredge materials to create shallows for wetlands, redesigning streets to absorb and filter stormwater, propagating a range of aquatic plants to make an ecologically rich buffer to storm surge, expanding natural flood zones (and buying out the people and businesses in them) that also function as parks most of the time, taking stormwater from highways and capturing sheet runoff in sponge parks, among other stormwater-capture systems.

As noted earlier, during the Great Depression, President Franklin D. Roosevelt’s New Deal programs brought sturdy, high-quality, and beautiful designs to public infrastructure with a national expenditure of $20 billion at a time when the gross domestic product was only $73 billion. The programs created millions of jobs, helped to restore economic stability, and offered financial reform to a flawed banking system. The Tennessee Valley Authority (TVA) was the largest New Deal enterprise. It was formed to harness and manage waterways of the Tennessee River watershed in seven states, create a public utility, and direct numerous resources to an impoverished region of the nation. Along with water management to prevent annual flooding and to manage navigation, President Roosevelt’s signing of the TVA Act created dams for the production and delivery of lower-cost electricity in an era when private utility companies were seen to be exploiting already financially stressed customers. And while the TVA was an electric utility that harnessed the power of water to deliver power, by the 1950s it added coal-burning power plants and, by the 1970s, nuclear power plants to deliver more power to meet growing demands. Energy production is at the root of global warming.

The need for greater urban climate resilience is a consequence of global warming, and emissions from combustion are a primary source. According to the U.S. Environmental Protection Agency (EPA), created in 1970 by executive order of President Richard M. Nixon, power plants, refineries, and chemical manufacturing accounted for almost 84 percent of total reported emissions of carbon dioxide, methane, nitrous oxide, and fluorinated gases in 2013.18 A modest tax on the companies that are responsible for the majority of climate-affecting pollution, including electric utilities, auto companies, oil companies, and other industrial polluters, could yield revenues necessary to create a Natural Defense Fund and finance a plan for climate change–resilient infrastructure for the next century. The idea of taxing carbon is not new. A tax on the largest carbon emitters and water polluters could bankroll a fund dedicated to urban and rural climate resilience. And the corporations can afford it: Even with energy prices at historic lows, the 10 largest power utility companies, for example, reported sales of more than $17 billion in 2014, and in the Fortune 500 list the top 10 oil refining companies alone had profits of nearly $67 billion in 2015.

In 2014, the U.S. government authorized nearly $50 billion to repair the damages from Hurricane Sandy. Although no monies were created for new defense systems, President Barack Obama included $1 billion in his 2015 budget for a climate-resilience fund. This was a good start. In fiscal year 2015, the Federal Highway Budget included $48.6 billion for repairs of an infrastructure system nearing the end of its designed lifespan. In the next two decades, cities across the country will need to spend at least $100 billion to clean up stormwater runoff and to reduce combined sewer overflows (CSOs) to comply with the Clean Water Act of 1972. It is unlikely that either local communities or the federal government will come up with the funds needed from taxpayers. Thus, by applying a minor tax on the industries whose practices have led to global climate change, a Natural Defense Fund can be created. If a related Natural Infrastructure System had the funding equivalent to the WPA of the New Deal, there would be a level of funding for resilient public works for the next century and beyond that would actually make a difference. As with the efforts to fight wars or help the nation recover from the Great Depression, a major program of renewal and development of the nation’s infrastructure will ensure the survival of cities, towns, and rural areas and lead to tens of thousands of permanent jobs in the public and private sectors, in the design, building, and maintenance of a new infrastructure for stormwater alone.

In 2005, I founded DLANDstudio, an interdisciplinary design firm based in Brooklyn, New York, where we have been developing systematic interventions and adaptations of urban infrastructure that address many of the issues described above. The work, funded with a combination of grants and public funding, involves pilot projects that are relatively small in relation to the enormity of the problem. The idea behind them is to find small pilots that, when applied on a broad scale, can have a large impact. Our projects are mostly in New York, but our planning stretches around the world. One of our most important projects is the Gowanus Canal Sponge Park, which operates to absorb, hold, clean, and filter surface water in one of the most polluted bodies of water in the United States.

Gowanus Canal Sponge Park

The Gowanus neighborhood of Brooklyn, New York, has a rich history. Originally a large marshy wetland, the area was the site of early Dutch settlement, important Revolutionary War battles, and industry, including the energy and construction sectors. In recent decades, the canal has been better known for the lingering effects of industrial pollution and municipal waste.19

Planners today envision the area as a new site for large residential development, a controversial proposal in the face of projections of a rising sea level from climate change. In this context, working closely with local community organizations, government agencies, and elected officials, DLANDstudio initiated and designed a new kind of public open space called Sponge Park™.20

In New York City, 0.10 inch (2.54 millimeters) of precipitation (especially rain) triggers a combined sewer overflow. The Hudson and East rivers, New Town Creek, Long Island Sound, Jamaica Bay, and Gowanus Canal are some of the key bodies of water impacted by these spills. Sponge Park™ redirects, holds, and treats stormwater runoff to minimize the volume of overflows that occur within the Gowanus Canal, and it serves as a model for similar street-ends that sheet-drain into canals, rivers, and other bodies of water in cities everywhere.

The Sponge Park™ design equally values the aesthetic, programmatic, and productive importance of treating contaminated water flowing into the Gowanus Canal, an EPA Superfund site. The park is designed as a working landscape that improves the environment of the canal over time. This innovative plan proposes modular strategies to divert stormwater runoff for use in the public park along the canal, thereby reducing the input of stormwater into the sewer system. The plants and engineered soils included in our design draw heavy metals and toxins out of contaminated water.

While most urban infrastructure projects have their challenges, the Sponge Park project had to confront not only geomorphic layers, but also layers of bureaucracy. We had to work with no fewer than nine different federal, state, and city agencies, each with overlapping ownership and regulatory oversight. As part of our creative response to those challenges,DLANDstudio raised all of the design and construction funding for the project from the New York State Council on the Arts, U.S. Congress, New York City Council, New England Water Pollution Control Commission, New York State Department of Environmental Conservation, and New York State Environmental Facilities Corporation. Through the use of grant funding, we were able to innovate in a way that would be impossible through normal procurement procedures. Because the project was seen as a pilot and was led by an outside entity but with the cooperation of government, we were able to create an innovative and replicable system. The first street-end absorbs 2 million gallons of stormwater per year. If Sponge Parks were built on every street-end in New York’s five boroughs, upward of 270 million gallons of water would be absorbed and cleaned before entering New York Harbor.

Hold System

Highway Overpass Landscape Detention Systems, or HOLD Systems, collect and filter stormwater from highway downspouts. HOLD Systems are planted, modular, green infrastructure systems that absorb and filter pollutants such as oil, heavy metals, and grease out of contaminated outfalls, rendering runoff much cleaner as it is released into drains and waterways. The system’s ability to retain water during heavy rain also improves the water quality of adjacent bodies of water. Plant palettes selected for each site help to break down or absorb copper, lead, cadmium, hydrocarbons, zinc, and iron commonly found in runoff. Specially calibrated soils maximize plant productivity and create the ideal level of drainage for citywide stormwater management needs.

HOLD Systems are designed for easy transport and deployment, and they can be quickly and easily installed in hard-to-reach, hard-to-drain areas along interstate highways. HOLD Systems can remediate the impact that a highway infrastructure makes on the hydrologic cycle of neighboring areas. Three modular systems—two in the ground and one above ground—have already been developed by DLANDstudio to adapt to water-table height, permeability, site toxicity, and the availability of sun. These systems are currently being deployed in three locations in New York City—two in Flushing Meadows–Corona Park under the Van Wyck Expressway and one in the Bronx under the Major Deegan Expressway—with funding and other support from the New York City Department of Environmental Protection, Long Island Sound Futures Fund, and the National Oceanic and Atmospheric Administration.

MoMA: “A New Urban Ground”

“A New Urban Ground” was developed by DLANDstudio with ARO (Architecture Research Office) of New York City, as part of the Museum of Modern Art’s (MoMA) “Rising Currents” exhibition in 2010. In the proposal, we offered an integrated and reciprocal organization of natural and hard-infrastructure systems. A combination of strategies—including wetlands on the perimeter, a raised edge, and sponge slips (water-management landscapes in old boat slips)—were paired with new street infrastructure systems away from the water’s edge in order to protect Lower Manhattan from flooding in the event of another large storm such as Hurricane Sandy, which was but a Category One hurricane when it hit the New Jersey, New York, and Connecticut shores.

The proposal consists of two components that form an interconnected system: porous green streets and a graduated edge. Porous streets will absorb typical rain events and help keep surface water out of the city’s combined sewer system. In larger storms, the streets filter and carry water to new perimeter wetlands to enrich coastal ecologies.

Three interrelated, high-performance systems are constructed on the Atlantic Coast to mitigate the expected rise in sea level and the force of a storm surge: a park network, freshwater wetlands, and brackish marshes. “A New Urban Ground” offers a new way for urban design and planning that brings together natural ecologies with engineered infrastructure systems to transform the city in both performance and experience. This plan, which was proposed almost two years before Hurricane Sandy flooded Lower Manhattan, Staten Island, Red Hook, and the Rockaways, has been cited internationally as a viable model for new civic approaches in resilience to storm surge and sea level rise.21

BQGreen

Highway infrastructure systems across the United States are designed for one primary purpose: to move people and goods quickly from one place to another. But, as a society, it is time to rethink this singular, limited view and consider how infrastructure systems can also become productive corridors of beauty, culture, ecology, and recreation. The BQGreen project considers one such corridor—the Brooklyn-Queens Expressway (BQE)—and examines in depth two sites along its 11.7-mile (18.829-kilometer) length.

The BQE was originally proposed by the Regional Plan Association during the mid-1930s to relieve traffic congestion, facilitate industrial development, and strengthen the connection between the boroughs of New York City. The BQE differed from the city’s other parkways by accommodating both commercial and noncommercial traffic. City planner Robert Moses (1888–1981), as the chairman of the Triborough Bridge and Tunnel Authority, charted its path from the Brooklyn Battery Tunnel near Red Hook to Grand Central Parkway in Queens. Construction of the BQE left a trail of divided neighborhoods in its wake.

We know from examples such as Riverside Park (1875 and 1937) in Manhattan, a hybrid Olmsted- and Moses-era park constructed on a concrete box over a major rail corridor, that it is possible to layer transportation with extraordinary public parks. Density is an urban concept that is tied to economics. As the land that infrastructure systems occupy becomes more valuable, it makes sense to layer. As environmental impacts and benefits begin to be assessed in economic terms, the value of making significant alterations to our roadways becomes more attractive at a time when America’s highway infrastructure is near the end of its lifespan and in need of significant repair. As these old systems are replaced, why not reexamine them and consider how they might serve economic, ecological, recreational, public health, and pedestrian-friendly circulation needs in addition to transportation?

Since 2005, DLANDstudio has examined two sunken sections of the BQE. The project began on a theoretical level with a grant from the New York State Council on the Arts to look at tiny Cobble Hill and Carroll Gardens before expanding to study a very different neighborhood in SouthSide Williamsburg, with funding from then City Councilwoman Diana Reyna. The latter study went into great detail about the economic, social, and public health consequences of adding a park to the impoverished neighborhood. Extensive community outreach included visits to neighboring playgrounds, church events, and performances to make sure we recognized the voice of the community. Data were developed regarding the financial feasibility of capping costs—including ventilation and structural costs—as well as analysis of job creation, real estate value, and even the bump in retail sales at neighboring bodegas. We studied public health issues and discovered very high asthma and obesity rates as well as a relative dearth of open recreational space for kids in the vulnerable preadolescent stage. We discovered gang territories defined by the trench and imagined blurring the boundaries with new soccer and baseball fields. We helped the community to dream and then engaged the agencies to help fulfill that vision, with formal support for the proposal from New York City’s Departments of Transportation, Environmental Protection, and Parks and Recreation. Outreach to Congressional Representative Nydia Velázquez and U.S. Senator Kirsten Gillibrand also yielded positive support. To realize this vision will take the collaboration of city, state, and federal agencies; through the master plan we are making a strong argument for why this is the right project for all to support, as we work to make our communities and cities more efficient, livable, and environmentally productive.

The insertion of quality open space has the capacity not only to improve the aesthetics of neighborhoods, but also to serve as a catalyst for ecological and economic improvements to the urban environment. This project establishes a vision of the BQE as a place of opportunity where new open space can be created by introducing an environmental and recreational corridor and turning a former eyesore into a public amenity.

QueensWay

Already, 20,000 miles (32,187 kilometers) of abandoned rail corridors have been turned into bicycle and pedestrian greenways across the United States.22 The QueensWay Vision Plan, commissioned by the Trust for Public Land (TPL), a nonprofit organization founded in 1972, is one of TPL’s several current national initiatives to transform former rights-of-way in cities into active and engaging community greenways. The project involves the conversion of a former Long Island Rail Road line into a new open-space corridor for the public.

The history of land development in Queens is largely defined by the numerous rail lines that subdivided open tracts of land during the late nineteenth and early twentieth centuries. The QueensWay appropriates one of these infrastructural lineaments to opposite effect, as a unifying device. Each of the three main segments of the QueensWay—northern, central, and southern—possesses a distinct physical character that creates unique staging opportunities for the interaction of urban and natural space. Along its 3.5-mile (5.633-kilometer) length, the former right-of-way transforms from an elevated embankment to a ravine to an elevated steel viaduct. The adjacencies along the QueensWay also vary, with Little League baseball fields along the northernmost end; big-box-store parking lots, residential neighborhoods, and a public park in the middle; and crossing train lines, commercial corridors, and parking lots to the south. Issues such as safety, security, and the privacy of adjacent properties are directly tied to how the former railway line moves through the urban landscape. A quiet presence in the city, camouflaged by school-bus parking, overgrown vines, light industry, and limited access, the QueensWay has the potential to be a beautiful recreational and ecological amenity for the community.

The Future

John Wesley Powell (1834–1902)—among America’s greatest geologists, scientific surveyors, and explorers—in his famous 1878 “Report on the Lands of the Arid Region of the United States,” called for a clearer understanding of the climate and carrying capacity of the American Southwest, recognizing that not all landscapes and their capacities for human development are the same:

To a great extent, the redemption of all these lands will require extensive and comprehensive plans, for the execution of which aggregated capital or cooperative labor will be necessary. . . . It was my purpose not only to consider the character of the lands themselves, but also the engineering problems involved in their redemption, and further to make suggestions for the legislative action necessary to inaugurate the enterprises by which these lands may eventually be rescued from their present worthless state.24

Powell wrote at a time when massive changes and their resultant impacts upon the American landscape were only beginning to be understood. We are at a similar stage in history when global climate change and an overall recognition of the impacts of people on the natural environment are yielding potentially catastrophic consequences. Powell, Gilbert White, and Jürgen Habermas, writing in different eras, all called for the integration of disciplinary and social thinking about our interaction with the physical world, beginning with the inherent, natural capacities of an environment to perform. Though they approached issues from different perspectives, they also understood a need for a multivalent, interdisciplinary approach to our occupation of the planet that involves ecological, economic, sociological, and artistic metrics.

The unprecedented and unrepeated investment in the American landscape during the New Deal and post–World War II periods provides replicable models from which to develop new systems of infrastructure that will help ameliorate the impacts of urbanization and climate change. New technologies and approaches to infrastructure that value working with natural systems can help create systems that grow stronger and more resilient over time. Collective will, new financing models—public or private—and strong leadership are needed to make WPA 2.0 a natural infrastructure system that can reduce human impact on the global biota.

 


 

Susannah Drake is the founding principal of DLANDstudio Architecture and Landscape Architecture, whose “Rising Currents New Urban Ground” proposal is in the permanent collection of the Museum of Modern Art and Cooper-Hewitt Design Museum. Since 2005, she has taught at Harvard, IIT, FIU, CCNY, Syracuse, Washington University in St. Louis, and The Cooper Union. Her work and writings have appeared in National Geographic and The New York Times, and she has contributed to Infrastructural Urbanism (DOM Publishers, 2011), Under the Elevated (Design Trust for Public Space, 2015), DEMO:POLIS (Akademie der Künste, 2016), and Nature and Cities: The Ecological Imperative in Urban Design and Planning (Lincoln Institute of Land Policy, 2016).

Drawing courtesy of DLANDstudio Architecture + Landscape Architecture, PLLC.

 


 

1. The WPA and the PWA were both New Deal programs during the Great Depression. Despite their similar-sounding names, they have critical distinctions: First, WPA laborers were hired directly by the government, while the PWA contracted much of their work to private entities. Second, the WPA engaged primarily in smaller projects with local governments such as schools, roads, sidewalks, and sewers, while PWA programs included large-scale bridges, tunnels, and dams. See: Leighninger, Robert D. “Cultural Infrastructure: The Legacy of New Deal Public Space.” Journal of Architectural Education, Volume 49, No. 4 (May, 1996): 226–236.

2. Carstensen, Vernon, “Patterns on the American Land,” Publius: The Journal of Federalism, Vol. 18, No. 4 (Fall 1988): 31–39.

3. Stilgoe, John R., Common Landscape of America, 1580 to 1845 (New Haven, CT: Yale University Press, 1983), 104.

4. The origins of this famous phrase about Manifest Destiny in America are disputed. Fred R. Shapiro, the editor of the Yale Book of Quotations, comments on the origins in the Yale Alumni Magazine (September/October 2008); see http://www.archives.yaleulumnimagazine.com.

5. See, for example, de Crèvecoeur, J. Hector St. John, Letters from an American Farmer (London, UK: T. Davies, 1782).

6. See Hudson, John C., Plains Country Towns (Minneapolis: University of Minnesota Press, 1985), which won the first John Brinckerhoff Jackson Book Prize of the Association of American Geographers.

7. Merchant, Carolyn, The Columbia Guide to American Environmental History (New York, NY: Columbia University Press, 2002), 112.

8. Habermas, Jürgen, “The Uncoupling of System and Lifeworld,” in Elliott, Anthony, ed., The Blackwell Reader in Contemporary Social Theory (Oxford, UK: Wiley-Blackwell, 1999), 175.

9. Gilligan, Carol, In a Different Voice: Psychological Theory and Women’s Development (Cambridge, MA: Harvard University Press, 1982).

10. Oberstar, James L., special comments in LePatner, Barry B., Too Big to Fall: America’s Failing Infrastructure and the Way Forward (Lebanon, NH: Foster Publishing, in association with the University Press of New England, 2010), xi.

11. Tracy, Tammy, and Hugh Morris, Rail-Trails and Safe Communities: The Experience on 372 Trails (Washington, D.C.: Rails-to-Trails Conservancy, 1998); available online at http://www.railstotrails.org/resources/documents/resource_docs/Safe%20Communities_F_lr.pdf.

12. See http://www.infrastructurereportcard.org.

13. See, for example, Kolbert, Elizabeth, “The Siege of Miami,” The New Yorker (December 21 and 28, 2015): 42–46 and 49–50.

14. White, Gilbert F., “The Changing Role of Water in Arid Lands,” in Kates, Robert W., and Ian Burton, eds., Geography, Resources, and Environment: Vol. 1, Selected Writings of Gilbert F. White (Chicago, IL: University of Chicago Press, 1986), 137.

15. Ibid.

16. As defined by the EPA, “gray” infrastructure is “conventional piped drainage and water treatment systems” and “green” infrastructure is “designed to move urban stormwater away from the built environment [and] reduces and treats stormwater at its source while delivering environmental, social, and economic benefits.” See EPA, “What is Green Infrastructure”; available at https://www.epa.gov/green-infrastructure/what-green-infrastructure.

17. See, for example, Ganis, John, with essays by Liz Wells and James E. Hansen, America’s Endangered Coasts: Photographs from Texas to Maine (Staunton, VA: George F. Thompson Publishing, 2016).

18. See http://www3.epa.gov for an update.

19. See Alexiou, Joseph, Gowanus: Brooklyn’s Curious Canal (New York, NY: NYU Press, 2015).

20. For an overview of Sponge Park, see Foderaro, Lisa W., “Building a Park in Brooklyn to Sop Up Polluted Waters: Site Will Treat Thousands of Gallons near Canal,” The New York Times (December 16, 2015): A27 and A29.

21. See, for example, Palazzo, Danilo, and Frederick R. Steiner, Urban Ecological Design: A Process for Regenerative Place (Washington, D.C.: Island Press, 2011), 6; and “Rising Currents: Projects for New York’s Waterfront to Respond to Climate Change,” Landscape Architecture China, Vol. 11, No. 3 (June 2010): 70–75.

22. The origins of the rails-to-trails movement was brilliantly presented by Charles E. Little in his now-classic book, Greenways for America (Baltimore, MD: The Johns Hopkins University Press, in association with the Center for American Places, 1990).

23. Carbonell, Armando, Mark Pisano, and Robert Yaro. 2005. Global gateway regions. September. New York, NY: Regional Plan Association. http://www.america2050.org/pdf/globalgatewayregions.pdf.

24. Powell, J. W., “Report on the Lands of the Arid Regions of the United States, with a More Detailed Account of the Lands of Utah” (Washington, D.C.: Government Printing Office, April 2, 1878), viii.
 

Evaluación de la contribución de valorización en Colombia

Oscar Borrero Ochoa, Abril 1, 2011

La “contribución de valorización”, que en Estados Unidos se conoce como betterment levy o special assessment y en otros países, especialmente de América Latina, se denomina “contribución por mejoras”, es una “carga impositiva generada por un gobierno a los propietarios de un grupo de inmuebles seleccionados para sufragar, totalmente o en parte, el costo de una obra o servicios públicos que generan mejoras específicas o servicios que se presumen de beneficio general para el público y de beneficio específico para los dueños de tales propiedades” (IAAO 1997, 10–11). En Colombia la contribución de valorización (CV) se ha aplicado desde 1921.

Si bien la contribución de valorización se aborda conceptualmente en la mayoría de las legislaciones latinoamericanas, su implementación muchas veces encuentra resistencia. Los principales argumentos en su contra son que es un instrumento poco práctico y técnicamente complicada, que falta capacidad para implementarlo, y que es impopular. Sin embargo, la experiencia de Colombia pareciera contradecir estos argumentos, al sugerir que la resistencia tiene sus raíces en de prejuicios, ideologías, o falta de información. Este instrumento no sólo tiene una larga historia de aplicación continua (aunque irregular), pero también una historia demostrada de recaudar ingresos significativos para financiar obras públicas.

Bogotá recoge actualmente cerca de mil millones de dólares para invertir en obras públicas utilizando este gravamen, y otras ocho ciudades importantes están cobrando, en conjunto, otros mil millones de dólares. Es de destacar analizando cobros recientes en la contribución sobre 1.500.000 predios en Bogotá, que su cobro ha sido generalmente aceptado por los contribuyentes, con tasas de no pago relativamente bajas (baja cartera morosa) – de hecho, más bajas que para el impuesto a la propiedad inmobiliaria. Si bien su legitimidad no está puesta en duda, incluso entre la comunidad empresarial, ha habido controversia sobre la aplicación metodológica de la carga y hay discusión en otras ciudades colombianas sobre el modelo a utilizar. Esto trae una pregunta interesante: ¿por qué, a pesar de sus imperfecciones técnicas, es la contribución de valorización tan aceptada por la sociedad?

A pesar de su relevancia, es muy poca la bibliografía existente en Colombia y en América Latina sobre este instrumento (Fernandes 1981; Bustamante 1996; Manon and Macon 1977). Mis colegas y yo hicimos un estudio de los métodos utilizados para aplicar la contribución de valorización en Bogotá y Manizales que representan dos modelos de cobro en Colombia (Borrero et al. 2011). Este artículo resume las principales conclusiones de ese estudio, las cuales esperamos puedan servir de guía a otras ciudades de la región latinoamericana interesadas en la aplicación de este instrumento en sus territorios.

En Colombia la contribución de valorización ha jugado un papel importante en el financiamiento de obras públicas y ha tenido una considerable participación en los ingresos de las ciudades. A finales de los años 1960 alcanzó a representar el 16% del total de los ingresos de Bogotá y el 45% de los ingresos del municipio de Medellín. A principios de la década de 1980 permitió recaudar el 30% de los ingresos de Cali y en 1993 el recaudo alcanzó el 24% de los ingresos de Bogotá. Durante la década del 2000 este instrumento ha sido muy utilizado en Bogotá, Medellín, Cali, Manizales, Bucaramanga, Barranquilla y en general en casi todas las ciudades con más de 300.000 habitantes en Colombia.

Se escogieron Bogotá y Manizales como ciudades típicas para estudiar porque durante los últimos 20 años han mantenido vigente este instrumento para financiar sus vías y desarrollo urbano. Aplicaron metodologías diferentes y tienen vasta experiencia para asesorar a otras ciudades. Cali y Barranquilla están haciendo un cobro para obras viales utilizando la metodología y asesoría del “modelo de Bogotá”, mientras que Bucaramanga y Pereira han utilizado la experiencia y método de Manizales (también conocido como el “modelo de Medellín”, otra de las ciudades pioneras en la aplicación de este instrumento). Ambos enfoques son legales en Colombia, pero la metodología y enfoque utilizados para distribuir el instrumento son muy diferentes.

La ley colombiana estipula tres parámetros para calcular la CV: (i) el costo de la obra de construcción, (ii) la valorización o plusvalía generada y (iii) la capacidad de pago del contribuyente. El Decreto Ley 1604 de 1966 exige que si el mayor valor generado por la obra no alcanza al costo, solo se puede cobrar hasta el costo de la obra. Asimismo debe tenerse en cuenta para fijar el monto distribuible la capacidad de pago del contribuyente, límite que deberá observarse aunque la valorización o el costo de la obra sean mayores. Por ejemplo, en Manizales uno de los proyectos recientes tuvo plusvalías pequeñas que representaban un valor considerablemente menor que el costo del proyecto. Sin embargo, se aplicó la contribución sobre la base de la plusvalía. La única ciudad que no cumple con esta norma es Bogotá, donde la contribución equivale al costo del proyecto.

El “modelo Bogotá” aplica para el beneficio local el método de factores para repartir el costo de la obra, teniendo en cuenta la capacidad de pago del contribuyente y diferentes grados de beneficio. Estos factores incluyen consideraciones tales como mejoramiento de condiciones de movilidad y otros aspectos de bienestar, pero sin cuantificar el beneficio por la plusvalía de los inmuebles generada por la obra.

Por su parte el “modelo Medellín” (aplicado en Manizales y otras ciudades) para la CV por beneficio local calcula primero el beneficio estimado en términos de la plusvalía que se generará después, mediante el método del “doble avalúo simple” y reparte luego el cobro, siempre teniendo en cuenta la capacidad de pago. El “modelo Bogotá” se parece más a un impuesto generalizado para cubrir el costo de las obras. El “modelo Medellín” se acerca más a la Participación en la Plusvalía por obras públicas (DL 388 de 1977, Artículo 87; Doebele 1998).

La experiencia de Bogotá

Bogotá, capital de Colombia, es una ciudad de 7,5 millones de habitantes y un área urbana que cubre 500 kilómetros cuadrados (50.000 hectáreas). Se ubica en el centro geográfico del país sobre la cordillera de los Andes en la Sabana de Bogotá, una planicie a 2.600 metros de altura que tiene cerca de 300.000 hectáreas de gran fertilidad agropecuaria. La administración de la CV en Bogotá lo realiza el Instituto de Desarrollo Urbano (IDU) quien también tiene a su cargo la identificación y construcción de las obras viales principales que se construirán con este instrumento. La CV se cobra a todos los inmuebles afectados por un proyecto determinado, y se calcula el cobro mediante el Método de Factores, consistente en la multiplicación de diferentes factores de beneficio. La tabla 1 (en anexo) muestra ejemplos de proyectos recientes realizados con fondos recaudados por la CV.

Área de influencia

Para poder efectuar el cobro de valorización por beneficio local, el IDU debe identificar el área de influencia, es decir, hasta donde podría generar beneficio en la movilidad y por lo tanto en la valorización de los inmuebles. El criterio para establecer las zonas de influencia y los grados de beneficio es que los predios que se incluyen son aquellos que por su cercanía y accesibilidad al proyecto registran una mayor frecuencia de uso y que así mismo pueden beneficiarse directamente por la construcción de la infraestructura según el impacto en los avalúos y condiciones económicas de los inmuebles.

Igualmente, con el objetivo de disminuir la contribución promedio de valorización, se trata de abarcar el mayor número posible de predios beneficiados dentro de los límites antes descritos, considerando las condiciones socioeconómicas de los predios. Los límites para cada zona de influencia resultaron de la superposición geográfica de las zonas de influencia individuales de cada obra, pero modificados y corregidos al considerar efectos de complementariedad de las zonas beneficiadas por el conjunto de obras como un todo (Borrero et al., 2011, 22).

Medición del beneficio en Bogotá

Los beneficios que resultan del proyecto o conjunto de proyectos se calculan por zona, tomando en cuenta los factores de beneficio de cada proyecto. Utilizando el ejemplo de un proyecto vial reciente, los factores de beneficio son: (1) mayor movilidad, la cual se traduce en mayor velocidad de tránsito, disminución de tiempos de desplazamiento, costos operativos más bajos, y mejor calidad de vida; (2) beneficios urbanísticos generales en la medida en que el proyecto beneficia la red vial y racionaliza el uso del espacio público; (3) cambios generados en el uso de suelo y estimulación de actividades productivas y comerciales; (4) aumento del valor del mercado de propiedades inmobiliarias vecinas; (5) integración del proyecto en la estructura urbana de la ciudad; (6) optimización de circulación y movilidad; y (7) recuperación de áreas deterioradas o desvalorizadas (Borrero et al. 2011, 84).

Una vez definidos los beneficios del proyecto y estimado su costo, la distribución de la carga toma en cuenta factores adicionales: el tipo de uso del suelo, densidad, grado de beneficio asignado a cada lote, y la capacidad de pago de los propietarios, medida en base a encuestas de hogares y de calidad de vida. Esta es la principal crítica que se hace al “modelo Bogotá”. El beneficio no mide la valorización o plusvalía generada en los inmuebles sino otros indicadores de movilidad, calidad de vida, condiciones sociales, etc.

La experiencia de Manizales

Manizales es una ciudad de 400.000 habitantes situada en el centro del país a 300 Km al occidente de Bogotá, en medio de la zona cafetera. Su topografía es montañosa, lo que implica elevados costos en obras de ingeniería. Tiene gran experiencia en el desarrollo vial y procesos de renovación urbana utilizando el mecanismo de la CV, pero utiliza una metodología diferente a la de Bogotá y requiere una descripción más detallada. La institución que administra y ejecuta la CV, con autoridad plena delegada por la legislación municipal, es el Instituto de Valorización de Manizales (INVAMA).

En los últimos tres años se hicieron cuatro proyectos viales utilizando el cobro de CV: la renovación de la Plaza Alfonso López ; la pavimentación de la calle Alférez Real; la renovación del Paseo de los Estudiantes; y desarrollo de la malla vial del Área Oriental de la ciudad. Estos cuatro proyectos se financiaron con un cobro único de la CV que cubrió el 80% de la ciudad y recaudó US$ 24,6 millones (ver tabla 2 en anexo).

Medición del beneficio en Manizales

En Manizales se aplica la misma metodología que utilizó Medellín durante muchos años y se utiliza con éxito en Bucaramanga y otras ciudades. Se denomina el “método del doble avalúo”. Consiste en recaudar información de avalúos comerciales o catastrales por zonas geoeconómicas comparables a las de la zona analizada; es decir, se selecciona una zona con características similares a las que se estima generará la obra futura, y se traslada el comportamiento de los valores de la tierra a los sectores donde se ejecutará la obra. El supuesto es que los valores del suelo se comportarán de manera parecida en ambas zonas. También se realizan avalúos comerciales, por peritos expertos para obtener precios de mercado (muestra de avalúos iniciales), así como una proyección del valor con el proyecto, mediante avalúos a precios del mercado en las zonas geoeconómicas tomadas como referencia (avalúo final).

El método requiere tener información del efecto valorización o beneficio generado por obras viales anteriores. A esto denominamos “análisis ex post”. La ciudad de Manizales ha realizado un análisis ex post de las obras ejecutadas en los últimos años para examinar la valorización generada. Desafortunadamente los institutos o ciudades que cobran Valorización, incluyendo a Bogotá y Medellín, no le hacen seguimiento económico al efecto resultante de las obras desarrolladas.

El primer avalúo, que tiene como fin producir el plano de iso precios antes de la obra, es el resultado del análisis de los valores reales actuales y las variaciones históricas que tiene el sector en su estado actual. El segundo avalúo determina la plusvalía que hipotéticamente generará la construcción de esa obra nueva en la zona. El predio de “máxima valorización” es el que debe analizarse en detalle para calificar realmente el porcentaje de su incremento de valor.

Pasos críticos en el método del doble avalúo

1. Definir el área de influencia. Esta definición se hace con base en la mejora de movilidad que causará la obra vial o de infraestructura. Es similar al modelo aplicado en Bogotá.

2. Calcular el beneficio y elaborar un mapa de ISO precios basado en una muestra de predios. Inicialmente la zona se define lo más amplia posible con criterios de comunicación vial y distancias. Dentro de esta amplia zona, se seleccionan unos predios muestrales, que representen las características predominantes de los predios de la zona, teniendo en cuenta características generales, no particulares de los mismos. Con esta base se construye un plano de iso precios de valores del suelo antes de la obra. Estos avalúos muestrales, por lo general, en los estudios de ciudades intermedias se toman entre cien (100) y doscientos (200) según los tamaños de las zonas de irrigación y la heterogeneidad de las zonas de influencia o irrigación. Todo este estudio inicial debe producir un plano de iso precios antes de la obra que refleje los valores de los lotes tipo. Luego se elabora un segundo mapa de iso precios con los nuevos valores esperados. Un tercer mapa relaciona las diferencias de valor o de iso valorización entre el primero y segundo mapa de iso precios, y también se utiliza para distribuir el beneficio o mayor valorización.

3. Proyección de valorización. Para determinar el efecto valorización o beneficio predial se hace un ejercicio con la participación interdisciplinaria de profesionales experimentados que aportan los siguientes criterios: un estudio económico, que defina unas formulas matemáticas de calificación de los factores a considerar en los criterios de plusvalía; un estudio vial, para calificar y cuantificar en cifras el beneficio en cuanto a reducción de distancias de los barrios beneficiados por la obra; un estudio urbanístico, que mida las posibilidades de cambio de uso del predio; y un estudio inmobiliario, para cuantificar comparativamente qué actores pesan más para darles mayor o menor puntuación proporcional.

4. Calcular la distribución del beneficio según calificación de factores. Se le asigna un peso a cada uno de los siguientes factores: posible cambio de uso, es el que genera más plusvalía, aunque está orientado a un menor número de predios (40%); mejoramiento del sector, al quedar comunicado con zonas de más alto nivel o zonas comerciales (20%); tiempo de ahorro en transporte, medido por la reducción de tiempo de viaje en la ciudad, con distancias claramente medibles (20%); y reducción de contaminación o congestión vial en zonas conflictivas donde ocurre este problema (20%).

5. Establecer el nivel de beneficio (punto focal). El “punto príncipe” o punto focal de máxima valorización de toda la zona de influencia será el lote o la zona puntual que más alta valorización obtendrá porque confluyen allí los más importantes factores de plusvalía. Se calcula la plusvalía esperada sobre este punto – que debe tener la calificación más alta – en porcentajes que se multiplicarán por el valor comercial inicial de cada zona. Con estos valores se construirá el plano de plusvalía o de iso precios que se estima alcanzará la zona luego de ejecutadas las obras. Los estudios ex post en varias ciudades encontraron que las obras viales generaron una valorización promedio real del 10% al 15% sobre los inmuebles (en los siguientes 3 años después de la obra). De esta manera, asumiendo que el mejor lote o inmueble del sector podría tener una valorización del 15%, si un inmueble quedó calificado con 70 puntos (según la calificación de factores) se le aplicará una valorización esperada del 10.5%.

6. Distribuir el beneficio. Una vez que el costo del proyecto ha sido determinado y su impacto de plusvalía ha sido calculado, INVAMA con el reparto o liquidación de la CV (cuantificación del tributo que se impone a cada bien inmueble) lo aplica dentro del área utilizando modelos apropiados para el proyecto. Manizales, así como la mayoría de ciudades de Colombia, utiliza el método de factores de beneficio, que se basa en la determinación de un área virtual producto de la multiplicación de los factores de ponderación de las características de los predios y el grado de beneficio por el área física del suelo. Los criterios para la construcción de los factores que se seleccionan para hacer la distribución varían entre ciudades, pero el punto de referencia es el valor del inmueble total, contemplando el área de terreno más construcción (Borrero et al. 2011, anexo 2).

7. Determinar la capacidad de pago. Los usos y estratos sociales tienen una liquidación diferente del gravamen, ya que se relacionan con la mayor capacidad de pago del contribuyente. Para la determinación de esta capacidad de pago de la CV, varias ciudades hacen encuestas de hogares y estudios sociales, de calidad de vida y de ingresos y gastos de la población. También suelen aplicarse parámetros comparativos de la CV con otros tributos, tasas y contribuciones, como la relación con el pago de servicios públicos de cada hogar, o la proporción de la CV con respecto al pago anual por impuesto predial.

8. Definir el plazo del cobro. En Manizales, Medellín y Bucaramanga el cobro es generalmente simultáneo con la ejecución del proyecto. Otras ciudades han experimentado con otros enfoques. En Cali, el cobro del último plan de valorización se efectuó antes del inicio de la construcción de las obras, pero su recaudo se extenderá por mucho más tiempo luego de que éstas finalicen. Las ciudades suelen hacer un solo cobro en cada administración o período edilicio (4 años), pero en los proyectos recientes de Bogotá y Cali, por ejemplo, los planes previstos alcanzan un plazo de ejecución y derrame de la Contribución que se extiende por varios períodos administrativos.

Aunque el plazo máximo según la ley cubre hasta los cinco años siguientes a la ejecución de las obras, las experiencias más exitosas en recaudo demuestran que no debe ser superior a dos años. Cuando los plazos son más amplios, es difícil el recaudo y se generan problemas de caja en el municipio para la construcción de las obras. La CV también se puede cobrar hasta dos años antes de iniciar las obras, lo cual exige mucha capacidad de ejecución de las mismas, en especial cuando se aprueban grandes paquetes de obra. La experiencia reciente de Bogotá que autorizó el cobro de la contribución con dos años de anticipación ha generado polémica entre la población porque la construcción de las obras se inició a un ritmo muy lento. Para evitar este problema, en el nuevo Estatuto de Valorización propuesto para Bogotá, se harán los cobros simultáneos a la ejecución de las obras.

Legitimidad percibida

La CV tiene muy buen apoyo de los ciudadanos y propietarios como lo demuestra el alto nivel de satisfacción medido con las encuestas de Manizales y las entrevistas a los actores (tabla 3 en anexo). El cobro se efectúa antes del comienzo de las obras y el pago se efectúa hasta en un 80% durante el primer año del cobro. Esta encuesta, aplicada después de concluidas dos obras en Manizales, resume la percepción ciudadana sobre la gestión del INVAMA de dichas obras. Específicamente, los resultados demuestran un vínculo claro entre el beneficio y la disposición a pagar la contribución – un nivel de cumplimiento más alto que el del impuesto predial, aunque la contribución es más onerosa que el impuesto. Este resultado contradice la percepción común de que los contribuyentes latinoamericanos tienen una cultura de no-pago. También comprueba el alto nivel de legitimidad de la CV entre los ciudadanos y la buena gestión municipal de esta carga.

Conclusiones

La experiencia de Colombia con la contribución de valorización en los últimos 70 años demuestra que es un instrumento viable para financiar el desarrollo urbano, capaz de recaudar ingresos significativos, aunque la metodología para calcular y distribuir los ingresos es compleja y puede ser mejorada. Entre las lecciones que se aprenden de esa experiencia, la más importante es el vínculo claro entre la provisión de beneficios públicos y la voluntad de los propietarios a pagar la contribución. El éxito depende de la legitimidad del proyecto y de la capacidad institucional y estándares éticos de la agencia que administra la contribución. A fin de generar confianza entre los ciudadanos, el éxito también se vincula con garantizar la capacidad de pago del tributo, la aplicación de un modelo equitativo de distribución, la publicidad del beneficio económico del proyecto, y la participación de los ciudadanos durante la fase de implementación.